Analytical investigation of simultaneous effects of convergent section heating of Laval nozzle, steam inlet condition, and nozzle geometry on condensation shock

Journal of Thermal Analysis and Calorimetry - Tập 133 Số 2 - Trang 1023-1039 - 2018
Makan Talebi Somesaraee1, Ehsan Amiri Rad1, Mohammad Reza Mahpeykar2
1Hakim Sabzevari University, P.O. Box 9617976487, Sabzevar, Iran
2Department of Mechanical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, P.O. Box 91775-1111, Mashhad, Iran

Tóm tắt

Từ khóa


Tài liệu tham khảo

Zeng JL, Zhou L, Zhang YF, Sun SL, Chen YH, Shu L, Yu LP, Zhu L, Song LB, Cao Z. Effects of some nucleating agents on the supercooling of erythritol to be applied as phase change material. J Therm Anal Calorim. 2017;129(3):1291–9.

Wyslouzil BE, Wölk J. Overview: homogeneous nucleation from the vapor phase—the experimental science. J Chem Phys. 2016;145(21):211702.

Mahpeykar MR, Amiri Rad E, Teymourtash AR. Analytical investigation into simultaneous effects of friction and heating on a supersonic nucleating Laval nozzle. Sci Iran Trans B Mech Eng. 2014;21(5):1700.

Mashmoushy H, Mahpeykar MR, Bakhtar F. Studies of nucleating and wet steam flows in two-dimensional cascades. Proc Inst Mech Eng Part C J Mech Eng Sci. 2004;218(8):843–58.

Yousefi Rad E, Mahpeykar MR. A novel hybrid approach for numerical modeling of the nucleating flow in Laval nozzle and transonic steam turbine blades. Energies. 2017;10(9):1285.

Young JB. Two-dimensional, nonequilibrium, wet-steam calculations for nozzles and turbine cascades. ASME J Turbomach. 1992;114(3):569–79.

White AJ. A comparison of modelling methods for polydispersed wet-steam flow. Int J Numer Meth Eng. 2003;57(6):819–34.

Jiang W, Liu Z, Liu H, Pang H, Bao L. Influences of friction drag on spontaneous condensation in water vapor supersonic flows. Sci China Ser E Technol Sci. 2009;52(9):2653–9.

Jiang W, Bian J, Liu Y, Liu Z, Teng L, Geng G. Investigation of flow characteristics and the condensation mechanism of ternary mixture in a supersonic nozzle. J Nat Gas Sci Eng. 2016;31(34):1054–61.

Lakzian E, Shaabani S. Analytical investigation of coalescence effects on the exergy loss in a spontaneously condensing wet-steam flow. Int J Exergy. 2015;16(4):383–403.

Bakhtar F, Young JB. A comparison between theoretical calculations and experimental measurements of droplet sizes in nucleating steam flows. Trans Inst Fluid Flow Mach. 1976;16(70):259–71.

Amiri Rad E, Mahpeykar MR, Teymourtash AR. Analytic investigation of the effects of condensation shock on turbulent boundary layer parameters of nucleating flow in a supersonic convergent-divergent nozzle. Sci Iran Trans B Mech Eng. 2014;21(5):1709.

Samaké O, Galanis N, Sorin M. On the design and corresponding performance of steam jet ejectors. Desalination. 2016;1(381):15–25.

Abdellaoui EY, Kairouani LK. Thermodynamic analysis of a new dual evaporator CO2 transcritical refrigeration cycle. Archives Thermodyn. 2017;38(1):39–62.

Mahpeykar MR, Teymourtash AR, Amiri Rad E. Reducing entropy generation by volumetric heat transfer in a supersonic two-phase steam flow in a Laval nozzle. Int J Exergy. 2011;9(1):21–39.

Amiri Rad E, Mahpeykar MR, Teymourtash AR. Evaluation of simultaneous effects of inlet stagnation pressure and heat transfer on condensing water-vapor flow in a supersonic Laval nozzle. Sci Iran. 2013;20(1):141–51.

Halama J, Fort J. Homogeneous nucleation of steam in convergent-divergent nozzle. Eng Mech. 2014;21(3):145–50.

Farag MS, Terhy AA, Askary WA, Hegazy AS. Numerical study on condensation process of steam flow in nozzles. Int J Adv Technol. 2015;6(140):2.

Mahpeykar MR, Teymourtash AR, Amiri Rad E. Theoretical investigation of effects of local cooling of a nozzle divergent section for controlling condensation shock in a supersonic two-phase flow of steam. Meccanica. 2013;48(4):815–27.

Asadov SM, Mustafaeva SN, Mammadov AN. Thermodynamic assessment of phase diagram and concentration–temperature dependences of properties of solid solutions of the GaS–GaSe system. J Therm Anal Calorim. 2018:1–7. https://doi.org/10.1007/s10973-018-6967-7 .

Furusawa T, Yamamoto S. Mathematical modeling and computation of high-pressure steam condensation in a transonic flow. J Fluid Sci Tech. 2017;12(1):JFST0002.

Senoo S, White AJ. Numerical simulations of unsteady wet steam flows with non-equilibrium condensation in the nozzles and the steam turbine. ASME paper no. FEDSM-2006-98202. 2006.

Madhurambal G, Mariappan M, Selvarajan G, Mojumdar SC. Investigation on nucleation kinetics of urea–thiourea mixed crystal (UTMC) in methanol and absolute alcohol. J Therm Anal Calorim. 2015;119(2):931–8.

Bakhtar F, Young JB, White AJ, Simpson DA. Classical nucleation theory and its application to condensing steam flow calculations. Proc Inst Mech Eng Part C J Mech Eng Sci. 2005;219(12):1315–33.

Abadi SNR, Ahmadpour A, Abadi SM, Meyer JP. CFD-based shape optimization of steam turbine blade cascade in transonic two phase flows. Appl Therm Eng. 2017;5(112):1575–89.

Henderson DW. Experimental analysis of non-isothermal transformations involving nucleation and growth. J Therm Anal Calorim. 1979;15(2):325–31.

Abadi SNR, Kouhikamali R. CFD-aided mathematical modeling of thermal vapor compressors in multiple effects distillation units. Appl Math Model. 2016;40(15):6850–68.

Hale BN. Temperature dependence of homogeneous nucleation rates for water: near equivalence of the empirical fit of Wölk and Strey, and the scaled nucleation model. J Chem Phys. 2005;122(20):204509.

Sinha S, Wyslouzil BE, Wilemski G. Modeling of H2O/D2O condensation in supersonic nozzles. Aerosol Sci Technol. 2009;43(1):9–24.

Němec T. Scaled nucleation theory for bubble nucleation of lower alkanes. Eur Phys J E. 2014;37(11):111.

Kermani MJ, Gerber AG. A general formula for the evaluation of thermodynamic and aerodynamic losses in nucleating steam flow. Int J Heat Mass Transf. 2003;46(17):3265–78.

Hric V, Halama J. Numerical solution of transonic wet steam flow in blade-to-blade cascade with non-equilibrium condensation and real thermodynamics. In: EPJ web of conferences 2015, vol. 92, p. 02025. EDP Sciences.

Yan F. Numerical simulations of high Knudsen number gas flows and microchannel electrokinetic liquid flows. PhD thesis, Drexel University. 2003.

Bakhtar F, Mahpeykar MR. On the performance of a cascade of turbine rotor tip section blading in nucleating steam Part 3: theoretical treatment. Proc Inst Mech Eng Part C J Mech Eng Sci. 1997;211(3):195–210.

Hamidi S, Kermani MJ. Numerical study of non-equilibrium condensation and shock waves in transonic moist-air and steam flows. Aerosp Sci Technol. 2015;30(46):188–96.

Wróblewski W, Dykas S. Two-fluid model with droplet size distribution for condensing steam flows. Energy. 2016;1(106):112–20.

Young JB. Nucleation in high pressure steam and flow in turbines. Doctoral dissertation, University of Birmingham.

Moore MJ, Walters PT, Crane RI, Davidson BJ. Predicting the fog drop size in wet steam turbines. Wet Steam. 1973;4:101–9.

Wang C, Wang L, Zhao H, Du Z, Ding Z. Effects of superheated steam on non-equilibrium condensation in ejector primary nozzle. Int J Refrig. 2016;31(67):214–26.