Analytical expressions for a finite-size 2D Ising model

I. M. Karandashev1, Boris Kryzhanovsky1, M. Yu. Malsagov1
1Scientific Research Institute for System Analysis, Russian Academy of Sciences, Moscow, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Baxter, R.J., Exactly Solved Models in Statistical Mechanics, London: Academic Press. 1982.

Stanley, H., Introduction to Phase Transitions and Critical Phenomena, Oxford: Clarendon Press, 1971.

Amit, D., Gutfreund, H., and Sompolinsky, H., Statistical mechanics of neural networks near saturation, Annals Phys., 1987, vol. 173, pp. 30–67.

van Hemmen, J.L. and Kuhn, R., Collective phenomena in Neural Networks, in Models of Neural Networks, Domany, E., van Hemmen, J.L., and Shulten, K., Eds., Berlin: Springer, 1992, pp. 1–105.

Martin, O.C., Monasson, R., and Zecchina, R., Statistical mechanics methods and phase transitions in optimization problems, Theor. Comput. Sci., 2001, vol. 265, nos. 1–2, pp. 3–67.

Karandashev, I., Kryzhanovsky, B., and Litinskii, L., Weighted patterns as a tool to improve the Hopfield model, Phys. Rev. E, 2012, vol. 85, p. 041925.

Hinton, G.E., Osindero, S., and Teh, Y., A fast learning algorithm for deep belief nets, Neural Computation, 2006, vol. 18, pp. 1527–1554.

Wainwright, M.J., Jaakkola, T., and Willsky, A.S., A new class of upper bounds on the log partition function, IEEE Trans. Inform. Theory, 2005, vol. 51, no. 7, pp. 2313–2335.

Yedidia, J.S., Freeman, W.T., and Weiss, Y., Constructing free-energy approximations and generalized belief propagation algorithms, IEEE Trans. Inform. Theory, 2005, vol. 51, no. 7, pp. 2282–2312.

Blote, H.W.J., Shchur, L.N., and Talapov, A.L., The cluster processor: new results, Int. J. Mod. Phys. C, 1999, vol. 10, no. 6, pp. 1137–1148.

Häggkvist, R., Rosengren, A., Lundow, P.H., Markström, K., Andren, D., and Kundrotas, P., On the Ising model for the simple cubic lattice, Adv. Phys., 2007, vol. 56, no. 5, pp. 653–755.

Lundow, P.H. and Markstrom, K., The critical behavior of the Ising model on the 4-dimensional lattice, Phys. Rev. E, 2009, vol. 80, p. 031104. arXiv:1202.3031v1.

Lundow, P.H. and Markstrom, K., The discontinuity of the specific heat for the 5D Ising model, Nucl. Phys. B, 2015, vol. 895, pp. 305–318.

Dixon, J.M., Tuszynski, J.A., and Carpenter, E.J., Analytical expressions for energies, degeneracies and critical temperatures of the 2D square and 3D cubic Ising models, Physica A, 2005, vol. 349, pp. 487–510.

Lyklema, J.W., Monte Carlo study of the one-dimensional quantum Heisenberg ferromagnet near T 1/4 0, Phys. Rev. B, 1983, vol. 27, no. 5, pp. 3108–3110.

Marcu, M., Muller, J., and Schmatzer, F.-K., Quantum Monte Carlo simulation of the one-dimensional spin-S xxz model, II: High precision calculations for S 1/4, J. Phys. A, 1985, vol. 18, no. 16, pp. 3189–3203.

Kasteleyn, P., Dimer statistics and phase transitions, J. Math. Phys., 1963, vol. 4, no. 2.

Fisher, M., On the dimer solution of planar Ising models, J. Math. Phys., 1966, vol. 7, no. 10.

Karandashev, Ya.M. and Malsagov, M.Yu., Polynomial algorithm for exact calculation of partition function for binary spin model on planar graphs, Opt. Mem. Neural Networks (Inform. Optics), 2017, vol. 26, no. 2. https://arxiv.org/abs/1611.00922.

Schraudolph, N. and Kamenetsky, D., Efficient exact inference in planar Ising models, in NIPS, 2008. https://arxiv.org/abs/0810.4401.

Onsager, L., Crystal statistics, I: A two-dimensional model with an order–disorder transition, Phys. Rev., 1944, vol. 65, no. 3–4, pp. 117–149.

Yang, C.N., The spontaneous magnetization of a two-dimensional Ising model, Phys. Rev., 1952, vol. 65, p. 808.