Analytical and preparative applications of magnetic split-flow thin fractionation on several ion-labeled red blood cells

Horng-Jyh Tsai1, Fang Ying2, C. Bor Fuh2
1School of Applied Chemistry, Chung Shan Medical University, 110, Sec 1, Chien-Kuo N. Road, Taichung, 402, Taiwan
2Department of Applied Chemistry, National Chi Nan University, 1, University Road, Puli, Nantou, 545, Taiwan

Tóm tắt

Abstract Background Magnetic Split-flow thin (SPLITT) fractionation is a newly developed technique for separating magnetically susceptible particles. Particles with different field-induced velocities can be separated into two fractions by adjusting applied magnetic forces and flow-rates at inlets and outlets. Methods Magnetic particles, Dynabeads, were used to test this new approach of field-induced velocity for susceptibility determination using magnetic SF at different magnetic field intensities. Reference measurements of magnetic susceptibility were made using a superconducting quantum interference device (SQUID) magnetometer. Various ion-labeled red blood cells (RBC) were used to study susceptibility determination and throughput parameters for analytical and preparative applications of magnetic SPLITT fractionation (SF), respectively. Throughputs were studied at different sample concentrations, magnetic field intensities, and channel flow-rates. Results The susceptibilities of Dynabeads determined by SPLITT fractionation (SF) were consistent with those of reference measurement using a superconducting quantum interference device (SQUID) magnetometer. Determined susceptibilities of ion-labeled RBC were consistent within 9.6% variations at two magnetic intensities and different flow-rates. The determined susceptibilities differed by 10% from referenced measurements. The minimum difference in magnetic susceptibility required for complete separation was about 5.0 × 10-6 [cgs]. Sample recoveries were higher than 92%. The throughput of magnetic SF was approximately 1.8 g/h using our experimental setup. Conclusion Magnetic SF can provide simple and economical determination of particle susceptibility. This technique also has great potential for cell separation and related analysis. Continuous separations of ion-labeled RBC using magnetic SF were successful over 4 hours. The throughput was increased by 18 folds versus early study. Sample recoveries were 93.1 ± 1.8% in triplicate experiments.

Từ khóa


Tài liệu tham khảo

Fuh CB: Versatile Techniques for Separation of Macromolecules, Colloids, and Particles. Anal Chem. 2000, 72: 266A-271A. 10.1021/ac000217b.

Fuh CB, Chen S: Magnetic split-flow thin fractionation: new technique for separation of magnetically susceptible particles. J Chromatogr A. 1998, 813: 313-324. 10.1016/S0021-9673(98)00337-9.

Fuh CB, Chen S: Magnetic split-flow thin fractionation of magnetically susceptible particles. J Chromatogr A. 1999, 857: 193-204. 10.1016/S0021-9673(99)00775-X.

Giddings JC: Continuous particle separation in split-flow thin (SPLITT) cells using hydrodynamic lift forces. Sep Sci & Technol. 1988, 23: 119-131.

Fuh CB, Lai JZ, Chang CM: Particle magnetic susceptibility determination using analytical split-flow thin fractionation. J Chromatogr A. 2001, 923: 263-270. 10.1016/S0021-9673(01)01008-1.

Springston SR, Myers MN, Giddings JC: Continuous particle fractionation based on gravitational sedimentation in split-flow thin cells. Anal Chem. 1987, 59: 344-350. 10.1021/ac00129a026.

Fuh CB, Myers MN, Giddings JC: Centrifugal SPLITT fractionation: new technique for separation of colloidal particles. Ind Eng Chem Res. 1994, 33: 355-362. 10.1021/ie00026a028.

Hoyos M, Moore LR, McCloskey KE, Margel S, Zuberi M, Chalmers JJ, Zborowski M: Study of magnetic particles pulsed-injected into an annular SPLITT-like channel inside a quadrupole magnetic field. J Chromatogr A. 2000, 903: 99-116. 10.1016/S0021-9673(00)00879-7.

Fuh CB, Giddings JC: Isoelectric SPLITT fractionation of proteins. Sep Sci & Technol. 1997, 32: 2945-2967.

Levin S, Tawil G: Analytical SPLITT fractionation in the diffusion mode operating as a dialysis-like system devoid of membrane:application to drug-carrying liposome. Anal Chem. 1993, 65: 2254-2261.

Fuh CB, Giddings JC: Separation of submicron emulsions with centrifugal split-flow thin (SPLITT) fractionation. J Microcolumn Sep. 1997, 9: 205-10.1002/(SICI)1520-667X(1997)9:3<205::AID-MCS9>3.0.CO;2-5.

Giddings JC: Optimization of transport-driven continuous SPLITT fractionation. Sep Sci & Technol. 1992, 27: 1489-1504.

Fuh CB, Myers MN, Giddings JC: Analytical SPLITT fractionation: rapid particle size analysis and measurement of oversized particles. Anal Chem. 1992, 64: 3125-3132. 10.1021/ac00048a010.

Fuh CB, Levins S, Giddings JC: Rapid diffusion coefficient measurements using analytical SPLITT fractionation: application to protein. Anal Biochem. 1993, 208: 80-87. 10.1006/abio.1993.1011.

Fuh CB, Su YS, Tsai HY: Magnetic susceptibility determination of various ion-labeled red blood cells using analytical magnetapheresis. J Chromatogr A. 2004, 1027: 289-296. 10.1016/j.chroma.2003.08.103.

Giddings JC: Measuring colloidal and macromolecular properties by FFF. Anal Chem. 1995, 67: 592A-598A.

Caldwell KD: Field-Flow Fractionation. Anal Chem. 1988, 60: 959A-973A.

Giddings JC: Field-flow fractionation:analysis of macromolecular, colloidal, and particulate materials. Science. 1993, 260: 1456-1465. 10.1126/science.8502990.