Analytical Traveling Wave and Soliton Solutions of the $$(2+1)$$ Dimensional Generalized Burgers–Huxley Equation
Tóm tắt
This paper employs the modified Kudryashov method, Riccati-Bernoulli sub-ODE method and the bifurcation methods to study a nonlinear
$$(2+1)$$
—dimensional generalised Burgers–Huxley equation in inhomogeneous dispersive medium to construct exact traveling wave solutions. By applying the Galilean wave transformation we obtained an ordinary differential equations. As a result, we investigated the dynamical behaviour of new traveling wave solutions under different parameter conditions. The solutions obtained by these methods provide us a powerful tool for solving nonlinear evolution equations in various fields of applied sciences.
Tài liệu tham khảo
Gromov, E.M.: Propagation of short nonlinear wave packets and solitons in smoothly inhomogeneous media. Phys. Lett. A 227, 67–71 (1997)
Yu, X., Gao, Y.-T., Sun, Z.-Y., Liu, Y.: N-soliton solutions, Bäcklund transformation and Lax pair for a generalized variable-coefficient fifth-order Korteweg-de Vries equation. Phys. Scr. 81, 045402 (2010)
Wang, X.Y., Zhu, Z.S., Lu, Y.K.: Solitary wave solutions of the generalized Burgers-Huxley equation. J. Phys. A 23(3), 271–274 (1990)
Satsuma, J., Ablowitz, M., Fuchssteiner, B., Kruskal, M.: Topics in Soliton Theory and Exactly Solvable Nonlinear Equations. World Scientific Publishing Co., Singapore (1986)
Scott, A.C.: Neurophysics. Wiley, New York (1977)
Wang, X.Y.: Nerve propagation and wall in liquid crystals. Phys. Lett. A 112, 402–406 (1985)
Kyrychko, Y.N., Bartuccelli, M.V., Blyuss, K.B.: Persistence of traveling wave solution of a fourth order diffusion system. J. Comput. Appl. Math. 176, 433–443 (2005)
Aronson, D.G., Weinberger, H.F.: Multidimensional nonlinear diffusion arising in population genetics. Adv. Math. 30, 33–76 (1978)
Carey, A.B., Giles, R.H., McLean, R.G.: The land scape epidemiology of rabies in Virginia. Am. J. Trop. Med. Hyg. 27, 573–580 (1978)
Fitzhugh, R.: Mathematical models of excitation and propagation in nerve. Biological Engineering. McGraw-Hill, New York (1969)
Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–554 (1952)
Bazsa, G., Epstein, I.R.: Traveling waves in the nitric acid-iron(II) reaction. J. Phys. Chem. 89, 3050–3053 (1985)
Yefimova, OYu., Kudryashov, N.A.: Exact solutions of the Burgers-Huxley equation. J. Appl. Math. Mech. 68(3), 413–420 (2004)
Estévez, P.G., Gordoa, P.R.: Painlevé analysis of the generalized Burgers-Hexley equation. J. Phys. A: Math. Gen. 23, 4831–4837 (1990)
Estévez, P.G.: Non-classical symmetries and the singular manifold method: the Burgers and the Burgers-Huxley equations. J. Phys. A Math. Gen. 27(6), 2113–2127 (1994)
Korpinar, Z., Inc, M., Alshomrani, A.S., Baleanu, D.: On exact special solutions for the stochastic regularized long wave-Burgers equation. Adv. Difference Equ. 2020(1), 1–12 (2020)
Kudryashov, N.A.: Seven common errors in finding exact solutions of nonlinear differential equations. Commun. Nonlin. Sci. Numer. Simul. 14, 3507–3509 (2009)
Lu, S., Guo, Y., Chen, L.: Periodic solutions for Liénard equation with an indefinite singularity. Nonlinear Anal. Real World Appl. 45, 542–556 (2019)
Deng, X.: Travelling wave solutions for the generalized Burgers-Huxley equation. Appl. Math. Comput. 204(2), 733–737 (2008)
Hashim, I., Noorani, M.S.M., Said Al-Hadidi, M.R.: Solving the generalized Burgers-Huxley equation using the Adomian decomposition method. Math. Comput. Model. 43(11–12), 1404–1411 (2006)
Wazwaz, A.-M.: Analytic study on Burgers Fisher and Huxley equations and combined forms of these equations. Appl. Math. Comput. 195(2), 754–761 (2008)
Bataineh, A.S., Noorani, M.S.M., Hashim, I.: Analytical treatment of gBH equation by homotopy analysis method. Bull. Malays. Math. Sci. Soc. 32(2), 233–243 (2009)
Gao, H., Zhao, R.: New exact solutions to the generalized Burgers-Huxley equation. Appl. Math. Comput. 217(4), 1598–1603 (2010)
Triki, H., Wazwaz, A.: Soliton-like solutions to the generalized Burgers-Huxley equation with variable coefficients. Cent. Eur. J. Eng. 3(4), 660–668 (2013)
Neeraj, K.T.: Analytical solution of two dimensional nonlinear space-time fractional Burgers-Huxley equation using fractional sub-equation method. Nat. Acad. Sci. Lett. 41(5), 295–299 (2018)
Shanmuga Priya, T., Gomathi, T.: Lie symmetries and classifications of (2+1)-dimensional potential Huxley equation. Internat. J. Crea. Res. Thou. 6(1), 124–129 (2018)
Javidi, M.: Spectral collocation method for the solution of the generalized Burger-Fisher equation. Appl. Math. Comput. 174, 345–352 (2006)
Wazwaz, A.M.: The tanh method for generalized forms of nonlinear heat conduction and Burgers-Fisher equations. Appl. Math. Comput. 169, 321–338 (2005)
Kudryashov, N.A.: One method for finding exact solutions of nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simul. 17(6), 2248–2253 (2012)
Ege, S.M., Misirli, E.: Solutions of the space-time fractional foam-drainage equation and the fractional Klein-Gordon equation by use of modified Kudryashov method. Int. J. Res. Advent Technol. 2(3), 384–388 (2014)
Yang, X.-F., Deng, Z.-C., Wei, Y.: A Riccati-Bernoulli sub-ODE method for nonlinear partial differential equations and its application. Adv. Difference Equ. 2015(17), 17 (2015)
Leta, T.D., et al.: Dynamical behavior of traveling wave Solutions for a \((2+1)\)-dimensional Bogoyavlenskii coupled system. Qual. Theory Dyn. Syst. 20(1), 1–22 (2021)
Leta, T.D., Liu, W., El Achab, A.: Dynamics of singular traveling wave solutions of a short Capillary-Gravity wave equation. J Appl. Anal. Comput. 11(3), 1191–1207 (2021)
Li, J.: Singular Nonlinear Traveling Wave Equations: Bifurcations and Exact Solutions. Science, Beijing (2013)
Leta, T.D., Li, J.: Various exact soliton solutions and bifurcations of a generalized Dullin-Gottwald-Holm equation with a power law nonlinearity. Internat. J. Bifur. Chaos 27(8), 1750129 (2017)
Li, J., Chen, G.: On a class of singular nonlinear traveling wave equations. Internat. J. Bifur. Chaos 17(11), 4049–4065 (2007)
Hörmander, L.: The Analysis of Linear Partial Differential Operators. Springer, Berlin (1990)
Arai, A.: Exactly solvable supersymmetric quantum mechanics. J. Math. Anal. Appl. 158(1), 63–79 (1991)
Arai, A.: Exact solutions of multi-component nonlinear Schrödinger and Klein-Gordon equations in two-dimensional space time. J. Phys. A 34(20), 4281–4288 (2001)