Analytical Methods in Untargeted Metabolomics: State of the Art in 2015

Arnald Alonso1, Sara Marsal1, Antonio Julià1
1Vall d’Hebron Research Institute

Tóm tắt

Từ khóa


Tài liệu tham khảo

Adjaye, 2005, Primary differentiation in the human blastocyst: comparative molecular portraits of inner cell mass and trophectoderm cells, Stem Cells, 23, 1514, 10.1634/stemcells.2005-0113

Aittokallio, 2006, Graph-based methods for analysing networks in cell biology, Brief. Bioinformatics, 7, 243, 10.1093/bib/bbl022

Akiyama, 2008, PRIMe: a web site that assembles tools for metabolomics and transcriptomics, In silico Biol., 8, 339

Allison, 1998, Multiple phenotype modeling in gene-mapping studies of quantitative traits: power advantages, Am. J. Hum. Genet., 63, 1190, 10.1086/302038

Alonso, 2011, AStream: an R package for annotating LC/MS metabolomic data, Bioinformatics, 27, 1339, 10.1093/bioinformatics/btr138

Alonso, 2013, Focus: a robust workflow for one-dimensional NMR spectral analysis, Anal. Chem., 86, 1160, 10.1021/ac403110u

Anderson, 2011, Dynamic adaptive binning: an improved quantification technique for NMR spectroscopic data, Metabolomics, 7, 179, 10.1007/s11306-010-0242-7

Anderson, 2008, Gaussian binning: a new kernel-based method for processing NMR spectroscopic data for metabolomics, Metabolomics, 4, 261, 10.1007/s11306-008-0117-3

Armitage, 2014, Metabolomics in cancer biomarker discovery: current trends and future perspectives, J. Pharm. Biomed. Anal., 87, 1, 10.1016/j.jpba.2013.08.041

Astle, 2012, A Bayesian model of NMR spectra for the deconvolution and quantification of metabolites in complex biological mixtures, J. Am. Stat. Assoc., 107, 1259, 10.1093/bioinformatics/bts308

Barrett, 2011, NCBI GEO: archive for functional genomics data sets – 10 years on, Nucleic Acids Res., 39, D1005, 10.1093/nar/gkq1184

Benjamini, 1995, Controlling the false discovery rate: a practical and powerful approach to multiple testing, J. R. Soc. Series B Stat. Methodol., 57, 289, 10.1111/j.2517-6161.1995.tb02031.x

Bingol, 2014, Customized metabolomics database for the analysis of NMR 1H – 1H TOCSY and 13C – 1H HSQC-TOCSY spectra of complex mixtures, Anal. Chem., 86, 5494, 10.1021/ac500979g

Bingol, 2015, Unified and isomer-specific NMR metabolomics database for the accurate analysis of 13C-1H HSQC spectra, ACS Chem. Biol., 10, 452, 10.1021/cb5006382

Bingol, 2012, TOCCATA: a customized carbon total correlation spectroscopy NMR metabolomics database, Anal. Chem., 84, 9395, 10.1021/ac302197e

Biswas, 2010, MetDAT: a modular and workflow-based free online pipeline for mass spectrometry data processing, analysis and interpretation, Bioinformatics, 26, 2639, 10.1093/bioinformatics/btq436

Bjerrum, 2014, Integration of transcriptomics and metabonomics: improving diagnostics, biomarker identification and phenotyping in ulcerative colitis, Metabolomics, 10, 280, 10.1007/s11306-013-0580-3

Blümich, 1995, Principles of nuclear magnetic resonance microscopy. Oxford University Press, Oxford, 1993, 492 pp, £25, Magn. Reson. Chem., 33, 322, 10.1002/mrc.1260330417

Borgan, 2010, Merging transcriptomics and metabolomics – advances in breast cancer profiling, BMC Cancer, 10, 628, 10.1186/1471-2407-10-628

Bothwell, 2011, An introduction to biological nuclear magnetic resonance spectroscopy, Biol. Rev. Camb. Philos. Soc., 86, 493, 10.1111/j.1469-185X.2010.00157.x

Bouatra, 2013, The human urine metabolome, PLoS ONE, 8, e73076, 10.1371/journal.pone.0073076

Brauer, 2006, Conservation of the metabolomic response to starvation across two divergent microbes, Proc. Natl. Acad. Sci. U.S.A., 103, 19302, 10.1073/pnas.0609508103

Brazma, 2001, Minimum information about a microarray experiment (MIAME)-toward standards for microarray data, Nat. Genet., 29, 365, 10.1038/ng1201-365

Bro, 2014, Principal component analysis, Anal. Methods, 6, 2812, 10.1039/c3ay41907j

Broadhurst, 2006, Statistical strategies for avoiding false discoveries in metabolomics and related experiments, Metabolomics, 2, 171, 10.1007/s11306-006-0037-z

Burton, 2008, Instrumental and experimental effects in LC – MS-based metabolomics, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 871, 227, 10.1016/j.jchromb.2008.04.044

Bylesjö, 2006, OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification, J. Chemom., 20, 341, 10.1002/cem.1006

Camacho, 2005, The origin of correlations in metabolomics data, Metabolomics, 1, 53, 10.1007/s11306-005-1107-3

Carroll, 2010, The Metabolome Express Project: enabling web-based processing, analysis and transparent dissemination of GC/MS metabolomics datasets, BMC Bioinformatics, 11, 376, 10.1186/1471-2105-11-376

Caspi, 2008, The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases, Nucleic Acids Res., 36, D623, 10.1093/nar/gkm900

Chadeau-Hyam, 2010, Metabolic profiling and the metabolome-wide association study: significance level for biomarker identification, J. Proteome Res., 9, 4620, 10.1021/pr1003449

Chae, 2014, Genomic signatures of specialized metabolism in plants, Science, 344, 510, 10.1126/science.1252076

Chen, 2012, Personal omics profiling reveals dynamic molecular and medical phenotypes, Cell, 148, 1293, 10.1016/j.cell.2012.02.009

Chylla, 2011, Deconvolution of two-dimensional NMR spectra by fast maximum likelihood reconstruction: application to quantitative metabolomics, Anal. Chem., 83, 4871, 10.1021/ac200536b

Clifford, 2009, Alignment using variable penalty dynamic time warping, Anal. Chem., 81, 1000, 10.1021/ac802041e

Cottret, 2010, MetExplore: a web server to link metabolomic experiments and genome-scale metabolic networks, Nucleic Acids Res., 38, W132, 10.1093/nar/gkq312

Craig, 2006, Scaling and normalization effects in NMR spectroscopic metabonomic data sets, Anal. Chem., 78, 2262, 10.1021/ac0519312

Cui, 2008, Metabolite identification via the Madison metabolomics consortium database, Nat. Biotechnol., 26, 162, 10.1038/nbt0208-162

De Meyer, 2008, NMR-based characterization of metabolic alterations in hypertension using an adaptive, intelligent binning algorithm, Anal. Chem., 80, 3783, 10.1021/ac7025964

Delaneau, 2013, Improved whole-chromosome phasing for disease and population genetic studies, Nat. Methods, 10, 5, 10.1038/nmeth.2307

Demirkan, 2012, Genome-wide association study identifies novel loci associated with circulating phospho- and sphingolipid concentrations, PLoS Genet., 8, e1002490, 10.1371/journal.pgen.1002490

Dietrich, 1991, Fast and precise automatic baseline correction of one- and two-dimensional NMR spectra, J. Magn. Reson. (1969), 91, 1, 10.1016/0022-2364(91)90402-F

Du, 2006, Improved peak detection in mass spectrum by incorporating continuous wavelet transform-based pattern matching, Bioinformatics, 22, 2059, 10.1093/bioinformatics/btl355

Du, 2013, Spectral deconvolution for gas chromatography mass spectrometry-based metabolomics: current status and future perspectives, Comput. Struct. Biotechnol. J., 4, e201301013, 10.5936/csbj.201301013

Eden, 2009, GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists, BMC Bioinformatics, 10, 48, 10.1186/1471-2105-10-48

Eilers, 2003, Parametric time warping, Anal. Chem., 76, 404, 10.1021/ac034800e

El-Aneed, 2009, Mass spectrometry, review of the basics: electrospray, MALDI, and commonly used mass analyzers, Appl. Spectrosc. Rev., 44, 210, 10.1080/05704920902717872

Ellinger, 2013, Databases and software for NMR-based metabolomics, Curr. Metabolomics, 1, 28, 10.2174/2213235X11301010028

Fernández-Albert, 2014, An R package to analyse LC/MS metabolomic data: MAIT (metabolite automatic identification toolkit), Bioinformatics, 30, 1937, 10.1093/bioinformatics/btu136

Ferreira, 2009, A multivariate test of association, Bioinformatics, 25, 132, 10.1093/bioinformatics/btn563

Fiehn, 2007, The metabolomics standards initiative (MSI), Metabolomics, 3, 175, 10.1007/s11306-007-0070-6

Field, 2006, A special issue on data standards, OMICS, 10, 84, 10.1089/omi.2006.10.84

Fonville, 2010, The evolution of partial least squares models and related chemometric approaches in metabonomics and metabolic phenotyping, J. Chemom., 24, 636, 10.1002/cem.1359

Forshed, 2003, Peak alignment of NMR signals by means of a genetic algorithm, Anal. Chim. Acta, 487, 189, 10.1016/S0003-2670(03)00570-1

Fuhrer, 2015, High-throughput discovery metabolomics, Curr. Opin. Biotechnol., 31, 73, 10.1016/j.copbio.2014.08.006

Fukushima, 2013, Recent progress in the development of metabolome databases for plant systems biology, Front. Plant Sci., 4, 73, 10.3389/fpls.2013.00073

Galesloot, 2014, A comparison of multivariate genome-wide association methods, PLoS ONE, 9, e95923, 10.1371/journal.pone.0095923

Gao, 2010, MetScape: a Cytoscape plug-in for visualizing and interpreting metabolomic data in the context of human metabolic networks, Bioinformatics, 26, 971, 10.1093/bioinformatics/btq048

García-Alcalde, 2011, Paintomics: a web based tool for the joint visualization of transcriptomics and metabolomics data, Bioinformatics, 27, 137, 10.1093/bioinformatics/btq594

Gaude, 2013, muma, An R package for metabolomics univariate and multivariate statistical analysis, Curr. Metabolomics, 1, 180, 10.2174/2213235X11301020005

Gibbons, 2015, Metabolomics as a tool in nutritional research, Curr. Opin. Lipidol., 26, 30, 10.1097/MOL.0000000000000140

Gieger, 2008, Genetics meets metabolomics: a genome-wide association study of metabolite profiles in human serum, PLoS Genet., 4, e1000282, 10.1371/journal.pgen.1000282

Gika, 2014, Current practice of liquid chromatography – mass spectrometry in metabolomics and metabonomics, J. Pharm. Biomed. Anal., 87, 12, 10.1016/j.jpba.2013.06.032

Gika, 2008, Liquid chromatography and ultra-performance liquid chromatography – mass spectrometry fingerprinting of human urine: sample stability under different handling and storage conditions for metabonomics studies, J. Chromatogr. A, 1189, 314, 10.1016/j.chroma.2007.10.066

Giskeødegård, 2010, Alignment of high resolution magic angle spinning magnetic resonance spectra using warping methods, Anal. Chim. Acta, 683, 1, 10.1016/j.aca.2010.09.026

Goeman, 2004, A global test for groups of genes: testing association with a clinical outcome, Bioinformatics, 20, 93, 10.1093/bioinformatics/btg382

Goodwin, 2014, Phenotypic mapping of metabolic profiles using self-organizing maps of high-dimensional mass spectrometry data, Anal. Chem., 86, 6563, 10.1021/ac5010794

Hao, 2012, BATMAN – an R package for the automated quantification of metabolites from nuclear magnetic resonance spectra using a Bayesian model, Bioinformatics, 28, 2088, 10.1093/bioinformatics/bts308

Hao, 2014, Bayesian deconvolution and quantification of metabolites in complex 1D NMR spectra using BATMAN, Nat. Protoc., 9, 1416, 10.1038/nprot.2014.090

Haug, 2013, MetaboLights – an open-access general-purpose repository for metabolomics studies and associated meta-data, Nucleic Acids Res., 41, D781, 10.1093/nar/gks1004

Hicks, 2009, Genetic determinants of circulating sphingolipid concentrations in European populations, PLoS Genet., 5, e1000672, 10.1371/journal.pgen.1000672

Hiller, 2009, MetaboliteDetector: comprehensive analysis tool for targeted and nontargeted GC/MS based metabolome analysis, Anal. Chem., 81, 3429, 10.1021/ac802689c

Horai, 2010, MassBank: a public repository for sharing mass spectral data for life sciences, J. Mass Spectrom., 45, 703, 10.1002/jms.1777

Howie, 2009, A flexible and accurate genotype imputation method for the next generation of genome-wide association studies, PLoS Genet., 5, e1000529, 10.1371/journal.pgen.1000529

Hummel, 2007, “The Golm Metabolome Database: a database for GC-MS based metabolite profiling,”, Metabolomics, 75, 10.1007/4735_2007_0229

Hummel, 2008, GlobalANCOVA: exploration and assessment of gene group effects, Bioinformatics, 24, 78, 10.1093/bioinformatics/btm531

Illig, 2010, A genome-wide perspective of genetic variation in human metabolism, Nat. Genet., 42, 137, 10.1038/ng.507

Inouye, 2012, Novel loci for metabolic networks and multi-tissue expression studies reveal genes for atherosclerosis, PLoS Genet., 8, e1002907, 10.1371/journal.pgen.1002907

Jacob, 2013, An efficient spectra processing method for metabolite identification from 1H-NMR metabolomics data, Anal. Bioanal. Chem., 405, 5049, 10.1007/s00216-013-6852-y

Jewison, 2014, SMPDB 2.0: big improvements to the small molecule pathway database, Nucleic Acids Res., 42, D478, 10.1093/nar/gkt1067

Jiang, 2013, Comparisons of five algorithms for chromatogram alignment, Chromatographia, 76, 1067, 10.1007/s10337-013-2513-8

Julià, 2014, Metabolomics in rheumatic diseases, Int. J. Clin. Rheumatol., 9, 353, 10.2217/ijr.14.25

Jung, 2005, Sample size for FDR-control in microarray data analysis, Bioinformatics, 21, 3097, 10.1093/bioinformatics/bti456

Kaddurah-Daouk, 2008, Metabolomics: a global biochemical approach to drug response and disease, Annu. Rev. Pharmacol. Toxicol., 48, 653, 10.1146/annurev.pharmtox.48.113006.094715

Kamburov, 2011, Integrated pathway-level analysis of transcriptomics and metabolomics data with IMPaLA, Bioinformatics, 27, 2917, 10.1093/bioinformatics/btr499

Kanehisa, 2012, KEGG for integration and interpretation of large-scale molecular data sets, Nucleic Acids Res., 40, D109, 10.1093/nar/gkr988

Karakach, 2009, Analysis of time course 1H NMR metabolomics data by multivariate curve resolution, Magn. Reson. Chem., 47, S105, 10.1002/mrc.2535

Karnovsky, 2012, MetScape 2 bioinformatics tool for the analysis and visualization of metabolomics and gene expression data, Bioinformatics, 28, 373, 10.1093/bioinformatics/btr661

Kelder, 2012, WikiPathways: building research communities on biological pathways, Nucleic Acids Res., 40, D1301, 10.1093/nar/gkr1074

Kell, 2014, Metabolomics and systems pharmacology: why and how to model the human metabolic network for drug discovery, Drug Discov. Today, 19, 171, 10.1016/j.drudis.2013.07.014

Kemsley, 1996, Discriminant analysis of high-dimensional data: a comparison of principal components analysis and partial least squares data reduction methods, Chemometr. Intell. Lab. Syst., 33, 47, 10.1186/1471-2105-10-213

Kettunen, 2012, Genome-wide association study identifies multiple loci influencing human serum metabolite levels, Nat. Genet., 44, 269, 10.1038/ng.1073

Khatri, 2012, Ten years of pathway analysis: current approaches and outstanding challenges, PLoS Comput. Biol., 8, e1002375, 10.1371/journal.pcbi.1002375

Kim, 2010, Multivariate classification of urine metabolome profiles for breast cancer diagnosis, BMC Bioinformatics, 11, S4, 10.1186/1471-2105-11-S2-S4

Klei, 2008, Pleiotropy and principal components of heritability combine to increase power for association analysis, Genet. Epidemiol., 32, 9, 10.1002/gepi.20257

Kohl, 2012, State-of-the art data normalization methods improve NMR-based metabolomic analysis, Metabolomics, 8, 146, 10.1007/s11306-011-0350-z

Kohonen, 2000, Self organization of a massive document collection, IEEE Trans. Neural Netw., 11, 574, 10.1109/72.846729

Kolz, 2009, Meta-analysis of 28,141 individuals identifies common variants within five new loci that influence uric acid concentrations, PLoS Genet., 5, e1000504, 10.1371/journal.pgen.1000504

Kotze, 2013, A novel untargeted metabolomics correlation-based network analysis incorporating human metabolic reconstructions, BMC Syst. Biol., 7, 107, 10.1186/1752-0509-7-107

Krumsiek, 2012, Mining the unknown: a systems approach to metabolite identification combining genetic and metabolic information, PLoS Genet., 8, e1003005, 10.1371/journal.pgen.1003005

Krumsiek, 2011, Gaussian graphical modeling reconstructs pathway reactions from high-throughput metabolomics data, BMC Syst. Biol., 5, 21, 10.1186/1752-0509-5-21

Kuhl, 2011, CAMERA: an integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets, Anal. Chem., 84, 283, 10.1021/ac202450g

Kühn, 2012, “Metabolomics in animal breeding,”, Genetics Meets Metabolomics, 107, 10.1007/978-1-4614-1689-0_8

Kuo, 2013, 3Omics: a web-based systems biology tool for analysis, integration and visualization of human transcriptomic, proteomic and metabolomic data, BMC Syst. Biol., 7, 64, 10.1186/1752-0509-7-64

Langfelder, 2008, WGCNA: an R package for weighted correlation network analysis, BMC Bioinformatics, 9, 559, 10.1186/1471-2105-9-559

Lee, 2004, Beam search for peak alignment of NMR signals, Anal. Chim. Acta, 513, 413, 10.1016/j.aca.2004.02.068

Lewis, 2009, rNMR: open source software for identifying and quantifying metabolites in NMR spectra, Magn. Reson. Chem., 47, S123, 10.1002/mrc.2526

Lommen, 2012, MetAlign 3.0: performance enhancement by efficient use of advances in computer hardware, Metabolomics, 8, 719, 10.1007/s11306-011-0369-1

Ludwig, 2012, Birmingham metabolite library: a publicly accessible database of 1-D 1H and 2-D 1H J-resolved NMR spectra of authentic metabolite standards (BML-NMR), Metabolomics, 8, 8, 10.1007/s11306-011-0347-7

Ludwig, 2011, MetaboLab – advanced NMR data processing and analysis for metabolomics, BMC Bioinformatics, 12, 366, 10.1186/1471-2105-12-366

Luts, 2010, A tutorial on support vector machine-based methods for classification problems in chemometrics, Anal. Chim. Acta, 665, 129, 10.1016/j.aca.2010.03.030

Ma, 2007, The Edinburgh human metabolic network reconstruction and its functional analysis, Mol. Syst. Biol., 3, 135, 10.1038/msb4100177

Madsen, 2010, Chemometrics in metabolomics – A review in human disease diagnosis, Anal. Chim. Acta, 659, 23, 10.1016/j.aca.2009.11.042

Mahadevan, 2008, Analysis of metabolomic data using support vector machines, Anal. Chem., 80, 7562, 10.1021/ac800954c

Mäkinen, 2008, 1H NMR metabonomics approach to the disease continuum of diabetic complications and premature death, Mol. Syst. Biol., 4, 167, 10.1038/msb4100205

Mamas, 2011, The role of metabolites and metabolomics in clinically applicable biomarkers of disease, Arch. Toxicol., 85, 5, 10.1007/s00204-010-0609-6

Marion, 2013, An introduction to biological NMR spectroscopy, Mol. Cell Proteomics, 12, 3006, 10.1074/mcp.O113.030239

Martin, 2010, Chemometric strategy for modeling metabolic biological space along the gastrointestinal tract and assessing microbial influences, Anal. Chem., 82, 9803, 10.1021/ac102015n

McCarthy, 2008, Genome-wide association studies for complex traits: consensus, uncertainty and challenges, Nat. Rev. Genet., 9, 356, 10.1038/nrg2344

Meinicke, 2008, Metabolite-based clustering and visualization of mass spectrometry data using one-dimensional self-organizing maps, Algorithms Mol. Biol., 3, 1, 10.1186/1748-7188-3-9

Melamud, 2010, Metabolomic analysis and visualization engine for LC-MS data, Anal. Chem., 82, 9818, 10.1021/ac1021166

Mercier, 2011, Towards automatic metabolomic profiling of high-resolution one-dimensional proton NMR spectra, J. Biomol. NMR, 49, 307, 10.1007/s10858-011-9480-x

Meyer, 2013, Omics and drug response, Annu. Rev. Pharmacol. Toxicol., 53, 475, 10.1146/annurev-pharmtox-010510-100502

Montoliu, 2009, Multivariate modeling strategy for intercompartmental analysis of tissue and plasma 1H NMR spectrotypes, J. Proteome Res., 8, 2397, 10.1021/pr8010205

Netzer, 2012, A network-based feature selection approach to identify metabolic signatures in disease, J. Theor. Biol., 310, 216, 10.1016/j.jtbi.2012.06.003

Netzer, 2011, Profiling the human response to physical exercise: a computational strategy for the identification and kinetic analysis of metabolic biomarkers, J. Clin. Bioinforma., 1, 34, 10.1186/2043-9113-1-34

Ni, 2012, ADAP-GC 2.0: deconvolution of coeluting metabolites from GC/TOF-MS data for metabolomics studies, Anal. Chem., 84, 6619, 10.1021/ac300898h

Nicholson, 2011, A genome-wide metabolic QTL analysis in Europeans implicates two loci shaped by recent positive selection, PLoS Genet., 7, e1002270, 10.1371/journal.pgen.1002270

Nicholson, 2012, Host-gut microbiota metabolic interactions, Science, 336, 1262, 10.1126/science.1223813

Niu, 2014, Comparative evaluation of eight software programs for alignment of gas chromatography – mass spectrometry chromatograms in metabolomics experiments, J. Chromatogr. A, 1374, 199, 10.1016/j.chroma.2014.11.005

O’reilly, 2012, MultiPhen: joint model of multiple phenotypes can increase discovery in GWAS, PLoS ONE, 7, e34861, 10.1371/journal.pone.0034861

Orešič, 2009, Metabolomics, a novel tool for studies of nutrition, metabolism and lipid dysfunction, Nutr. Metab. Cardiovasc. Dis., 19, 816, 10.1016/j.numecd.2009.04.018

Patti, 2012, Innovation: metabolomics: the apogee of the omics trilogy, Nat. Rev. Mol. Cell Biol., 13, 263, 10.1038/nrm3314

Peré-Trepat, 2007, Comparison of different multiway methods for the analysis of geographical metal distributions in fish, sediments and river waters in Catalonia, Chemometr. Intell. Lab. Syst., 88, 69, 10.1016/j.chemolab.2006.09.009

Petersen, 2014, Epigenetics meets metabolomics: an epigenome-wide association study with blood serum metabolic traits, Hum. Mol. Genet., 23, 534, 10.1093/hmg/ddt430

Pluskal, 2010, MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data, BMC Bioinformatics, 11, 395, 10.1186/1471-2105-11-395

Psychogios, 2011, The human serum metabolome, PLoS ONE, 6, e16957, 10.1371/journal.pone.0016957

Putri, 2013, Current metabolomics: technological advances, J. Biosci. Bioeng., 116, 9, 10.1016/j.jbiosc.2013.01.004

Qi, 2014, Plant metabolomics and metabolic biology, J. Integr. Plant Biol., 56, 814, 10.1111/jipb.12247

Rafiei, 2015, Comparison of peak-picking workflows for untargeted liquid chromatography/high-resolution mass spectrometry metabolomics data analysis, Rapid Commun. Mass Spectrom., 29, 119, 10.1002/rcm.7094

Rasmussen, 2011, Standardization of factors that influence human urine metabolomics, Metabolomics, 7, 71, 10.1007/s11306-010-0234-7

Ravanbakhsh, 2014, Accurate, fully-automated NMR spectral profiling for metabolomics, arXiv, 1409

Reiner, 2003, Identifying differentially expressed genes using false discovery rate controlling procedures, Bioinformatics, 19, 368, 10.1093/bioinformatics/btf877

Reo, 2002, NMR-based metabolomics, Drug Chem. Toxicol., 25, 375, 10.1081/DCT-120014789

Rhee, 2013, A genome-wide association study of the human metabolome in a community-based cohort, Cell Metab., 18, 130, 10.1016/j.cmet.2013.06.013

Ried, 2012, PSEA: phenotype set enrichment analysis – a new method for analysis of multiple phenotypes, Genet. Epidemiol., 36, 244, 10.1002/gepi.21617

Roberts, 2012, Targeted metabolomics, Curr. Protoc. Mol. Biol., 1, 10.1002/0471142727.mb3002s98

Robertson, 2013, Metabolomics in drug discovery and development, Clin. Pharmacol. Ther., 94, 559, 10.1038/clpt.2013.120

Robin, 2011, pROC: an open-source package for R and S+ to analyze and compare ROC curves, BMC Bioinformatics, 12, 77, 10.1186/1471-2105-12-77

Robinette, 2008, Web server based complex mixture analysis by NMR, Anal. Chem., 80, 3606, 10.1021/ac702530t

Rohn, 2012, VANTED v2: a framework for systems biology applications, BMC Syst. Biol., 6, 139, 10.1186/1752-0509-6-139

Sakurai, 2013, PRIMe update: innovative content for plant metabolomics and integration of gene expression and metabolite accumulation, Plant Cell Physiol., 54, e5, 10.1093/pcp/pcs184

Salek, 2013a, The role of reporting standards for metabolite annotation and identification in metabolomic studies, Gigascience, 2, 13, 10.1186/2047-217X-2-13

Salek, 2013b, The MetaboLights repository: curation challenges in metabolomics, Database (Oxford), 2013, bat029, 10.1093/database/bat029

Savorani, 2010, Icoshift: a versatile tool for the rapid alignment of 1D NMR spectra, J. Magn. Reson., 202, 190, 10.1016/j.jmr.2009.11.012

Shabalin, 2012, Matrix eQTL: ultra fast eQTL analysis via large matrix operations, Bioinformatics, 28, 1353, 10.1093/bioinformatics/bts163

Shin, 2014, An atlas of genetic influences on human blood metabolites, Nat. Genet., 46, 543, 10.1038/ng.2982

Sing, 2005, ROCR: visualizing classifier performance in R, Bioinformatics, 21, 3940, 10.1093/bioinformatics/bti623

Smith, 2006, XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification, Anal. Chem., 78, 779, 10.1021/ac051437y

Smoot, 2011, Cytoscape 2.8: new features for data integration and network visualization, Bioinformatics, 27, 431, 10.1093/bioinformatics/btq675

Sousa, 2013, Optimized bucketing for NMR spectra: three case studies, Chemometr. Intell. Lab. Syst., 122, 93, 10.1016/j.chemolab.2013.01.006

Sreekumar, 2009, Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression, Nature, 457, 910, 10.1038/nature07762

Stein, 1999, An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry data, J. Am. Soc. Mass Spectrom., 10, 770, 10.1016/S1044-0305(99)00047-1

Steinbeck, 2012, MetaboLights: towards a new COSMOS of metabolomics data management, Metabolomics, 8, 757, 10.1007/s11306-012-0462-0

Steinbeck, 2003, NMRShiftDB constructing a free chemical information system with open-source components, J. Chem. Inf. Comput. Sci., 43, 1733, 10.1021/ci0341363

Stephens, 2013, A unified framework for association analysis with multiple related phenotypes, PLoS ONE, 8, e65245, 10.1371/journal.pone.0065245

Steuer, 2006, Review: on the analysis and interpretation of correlations in metabolomic data, Brief. Bioinformatics, 7, 151, 10.1093/bib/bbl009

Steuer, 2003, Observing and interpreting correlations in metabolomic networks, Bioinformatics, 19, 1019, 10.1093/bioinformatics/btg120

Sturm, 2008, OpenMS – an open-source software framework for mass spectrometry, BMC Bioinformatics, 9, 163, 10.1186/1471-2105-9-163

Sud, 2007, LMSD: LIPID MAPS structure database, Nucleic Acids Res., 35, D527, 10.1093/nar/gkl838

Suhre, 2011a, Human metabolic individuality in biomedical and pharmaceutical research, Nature, 477, 54, 10.1038/nature10354

Suhre, 2011b, A genome-wide association study of metabolic traits in human urine, Nat. Genet., 43, 565, 10.1038/ng.837

Sumner, 2007, Proposed minimum reporting standards for chemical analysis chemical analysis working group (CAWG) metabolomics standards initiative (MSI), Metabolomics, 3, 211, 10.1007/s11306-007-0082-2

Szymanska, 2012, Double-check: validation of diagnostic statistics for PLS-DA models in metabolomics studies, Metabolomics, 8, 3, 10.1007/s11306-011-0330-3

Tanaka, 2009, Genome-wide association study of plasma polyunsaturated fatty acids in the InCHIANTI study, PLoS Genet., 5, e1000338, 10.1371/journal.pgen.1000338

Tapp, 2009, Notes on the practical utility of OPLS, Trends Analyt. Chem., 28, 1322, 10.1016/j.trac.2009.08.006

Tautenhahn, 2008, Highly sensitive feature detection for high resolution LC/MS, BMC Bioinformatics, 9, 504, 10.1186/1471-2105-9-504

Tautenhahn, 2012a, An accelerated workflow for untargeted metabolomics using the METLIN database, Nat. Biotechnol., 30, 826, 10.1038/nbt.2348

Tautenhahn, 2012b, XCMS online: a web-based platform to process untargeted metabolomic data, Anal. Chem., 84, 5035, 10.1021/ac300698c

Tautenhahn, 2010, metaXCMS: second-order analysis of untargeted metabolomics data, Anal. Chem., 83, 696, 10.1021/ac102980g

Theodoridis, 2011, Mass spectrometry-based holistic analytical approaches for metabolite profiling in systems biology studies, Mass Spectrom. Rev., 30, 884, 10.1002/mas.20306

Tomasi, 2004, Correlation optimized warping and dynamic time warping as preprocessing methods for chromatographic data, J. Chemom, 18, 231, 10.1002/cem.859

Townsend, 2013, Reproducibility of metabolomic profiles among men and women in 2 large cohort studies, Clin. Chem., 59, 1657, 10.1373/clinchem.2012.199133

Trygg, 2002, Orthogonal projections to latent structures (O-PLS), J. Chemom., 16, 119, 10.1002/cem.695

Tulpan, 2011, MetaboHunter: an automatic approach for identification of metabolites from 1H-NMR spectra of complex mixtures, BMC Bioinformatics, 12, 400, 10.1186/1471-2105-12-400

Ulrich, 2008, BioMagResBank, Nucleic Acids Res., 36, D402, 10.1093/nar/gkm957

Valcárcel, 2011, A differential network approach to exploring differences between biological states: an application to prediabetes, PLoS ONE, 6, e24702, 10.1371/journal.pone.0024702

Van Den Oord, 2008, Controlling false discoveries in genetic studies, Am. J. Med. Genet. B Neuropsychiatr. Genet., 147B, 637, 10.1002/ajmg.b.30650

Van Nederkassel, 2006, A comparison of three algorithms for chromatograms alignment, J. Chromatogr. A, 1118, 199, 10.1016/j.chroma.2006.03.114

Veselkov, 2008, Recursive segment-wise peak alignment of biological 1H NMR spectra for improved metabolic biomarker recovery, Anal. Chem., 81, 56, 10.1021/ac8011544

Vinaixa, 2012, A guideline to univariate statistical analysis for LC/MS-based untargeted metabolomics-derived data, Metabolites, 2, 775, 10.3390/metabo2040775

Vu, 2013, Getting your peaks in line: a review of alignment methods for NMR spectral data, Metabolites, 3, 259, 10.3390/metabo3020259

Vu, 2011, An integrated workflow for robust alignment and simplified quantitative analysis of NMR spectrometry data, BMC Bioinformatics, 12, 405, 10.1186/1471-2105-12-405

Wang, 2009, Automics: an integrated platform for NMR-based metabonomics spectral processing and data analysis, BMC Bioinformatics, 10, 83, 10.1186/1471-2105-10-83

Ward, 2007, Recent applications of NMR spectroscopy in plant metabolomics, FEBS J., 274, 1126, 10.1111/j.1742-4658.2007.05675.x

Weljie, 2006, Targeted profiling: quantitative analysis of 1H NMR metabolomics data, Anal. Chem., 78, 4430, 10.1021/ac060209g

Westerhuis, 2008, Assessment of PLSDA cross validation, Metabolomics, 4, 81, 10.1007/s11306-007-0099-6

Wikoff, 2009, Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites, Proc. Natl. Acad. Sci. U.S.A., 106, 3698, 10.1073/pnas.0812874106

Winnike, 2009, Effects of a prolonged standardized diet on normalizing the human metabolome, Am. J. Clin. Nutr., 90, 1496, 10.3945/ajcn.2009.28234

Wishart, 2008, Quantitative metabolomics using NMR, Trends Analyt. Chem., 27, 228, 10.1016/j.trac.2007.12.001

Wishart, 2013, HMDB 3.0 – the human metabolome database in 2013, Nucleic Acids Res., 41, D801, 10.1093/nar/gks1065

Wishart, 2008, The human cerebrospinal fluid metabolome, J. Chromatogr. B, 871, 164, 10.1016/j.jchromb.2008.05.001

Wold, 1987, Principal component analysis, Chemometr. Intell. Lab. Syst., 2, 37, 10.1016/0169-7439(87)80084-9

Wong, 2005, Application of fast Fourier transform cross-correlation for the alignment of large chromatographic and spectral datasets, Anal. Chem., 77, 5655, 10.1021/ac050619p

Xi, 2008, Baseline correction for NMR spectroscopic metabolomics data analysis, BMC Bioinformatics, 9, 324, 10.1186/1471-2105-9-324

Xia, 2008, MetaboMiner – semi-automated identification of metabolites from 2D NMR spectra of complex biofluids, BMC Bioinformatics, 9, 507, 10.1186/1471-2105-9-507

Xia, 2013, Translational biomarker discovery in clinical metabolomics: an introductory tutorial, Metabolomics, 9, 280, 10.1007/s11306-012-0482-9

Xia, 2012, MetaboAnalyst 2.0 – a comprehensive server for metabolomic data analysis, Nucleic Acids Res., 40, W127, 10.1093/nar/gks374

Xia, 2010a, MetPA: a web-based metabolomics tool for pathway analysis and visualization, Bioinformatics, 26, 2342, 10.1093/bioinformatics/btq418

Xia, 2010b, MSEA: a web-based tool to identify biologically meaningful patterns in quantitative metabolomic data, Nucleic Acids Res., 38, W71, 10.1093/nar/gkq329

Xiao, 2009, An optimized buffer system for NMR-based urinary metabolomics with effective pH control, chemical shift consistency and dilution minimization, Analyst, 134, 916, 10.1039/b818802e

Xie, 2005, A note on using permutation-based false discovery rate estimates to compare different analysis methods for microarray data, Bioinformatics, 21, 4280, 10.1093/bioinformatics/bti685

Yang, 2009, Comparison of public peak detection algorithms for MALDI mass spectrometry data analysis, BMC Bioinformatics, 10, 4, 10.1186/1471-2105-10-4

Yin, 2013, Preanalytical aspects and sample quality assessment in metabolomics studies of human blood, Clin. Chem., 59, 833, 10.1373/clinchem.2012.199257

Zhang, 2012, Modern analytical techniques in metabolomics analysis, Analyst, 137, 293, 10.1039/c1an15605e

Zhang, 2013, Integration of metabolomics and transcriptomics revealed a fatty acid network exerting growth inhibitory effects in human pancreatic cancer, Clin. Cancer Res., 19, 4983, 10.1158/1078-0432.CCR-13-0209

Zhang, 2010, Baseline correction using adaptive iteratively reweighted penalized least squares, Analyst, 135, 1138, 10.1039/b922045c

Zheng, 2011, Identification and quantification of metabolites in 1H NMR spectra by Bayesian model selection, Bioinformatics, 27, 1637, 10.1093/bioinformatics/btr118

Zhou, 2012, LC-MS-based metabolomics, Mol. Biosyst., 8, 470, 10.1039/c1mb05350g

Zhu, 2009, Rejoinder: why do we test multiple traits in genetic association studies?, J. Korean Stat. Soc., 38, 25, 10.1016/j.jkss.2008.10.007