Analytical Methods in Untargeted Metabolomics: State of the Art in 2015
Tóm tắt
Từ khóa
Tài liệu tham khảo
Adjaye, 2005, Primary differentiation in the human blastocyst: comparative molecular portraits of inner cell mass and trophectoderm cells, Stem Cells, 23, 1514, 10.1634/stemcells.2005-0113
Aittokallio, 2006, Graph-based methods for analysing networks in cell biology, Brief. Bioinformatics, 7, 243, 10.1093/bib/bbl022
Akiyama, 2008, PRIMe: a web site that assembles tools for metabolomics and transcriptomics, In silico Biol., 8, 339
Allison, 1998, Multiple phenotype modeling in gene-mapping studies of quantitative traits: power advantages, Am. J. Hum. Genet., 63, 1190, 10.1086/302038
Alonso, 2011, AStream: an R package for annotating LC/MS metabolomic data, Bioinformatics, 27, 1339, 10.1093/bioinformatics/btr138
Alonso, 2013, Focus: a robust workflow for one-dimensional NMR spectral analysis, Anal. Chem., 86, 1160, 10.1021/ac403110u
Anderson, 2011, Dynamic adaptive binning: an improved quantification technique for NMR spectroscopic data, Metabolomics, 7, 179, 10.1007/s11306-010-0242-7
Anderson, 2008, Gaussian binning: a new kernel-based method for processing NMR spectroscopic data for metabolomics, Metabolomics, 4, 261, 10.1007/s11306-008-0117-3
Armitage, 2014, Metabolomics in cancer biomarker discovery: current trends and future perspectives, J. Pharm. Biomed. Anal., 87, 1, 10.1016/j.jpba.2013.08.041
Astle, 2012, A Bayesian model of NMR spectra for the deconvolution and quantification of metabolites in complex biological mixtures, J. Am. Stat. Assoc., 107, 1259, 10.1093/bioinformatics/bts308
Barrett, 2011, NCBI GEO: archive for functional genomics data sets – 10 years on, Nucleic Acids Res., 39, D1005, 10.1093/nar/gkq1184
Benjamini, 1995, Controlling the false discovery rate: a practical and powerful approach to multiple testing, J. R. Soc. Series B Stat. Methodol., 57, 289, 10.1111/j.2517-6161.1995.tb02031.x
Bingol, 2014, Customized metabolomics database for the analysis of NMR 1H – 1H TOCSY and 13C – 1H HSQC-TOCSY spectra of complex mixtures, Anal. Chem., 86, 5494, 10.1021/ac500979g
Bingol, 2015, Unified and isomer-specific NMR metabolomics database for the accurate analysis of 13C-1H HSQC spectra, ACS Chem. Biol., 10, 452, 10.1021/cb5006382
Bingol, 2012, TOCCATA: a customized carbon total correlation spectroscopy NMR metabolomics database, Anal. Chem., 84, 9395, 10.1021/ac302197e
Biswas, 2010, MetDAT: a modular and workflow-based free online pipeline for mass spectrometry data processing, analysis and interpretation, Bioinformatics, 26, 2639, 10.1093/bioinformatics/btq436
Bjerrum, 2014, Integration of transcriptomics and metabonomics: improving diagnostics, biomarker identification and phenotyping in ulcerative colitis, Metabolomics, 10, 280, 10.1007/s11306-013-0580-3
Blümich, 1995, Principles of nuclear magnetic resonance microscopy. Oxford University Press, Oxford, 1993, 492 pp, £25, Magn. Reson. Chem., 33, 322, 10.1002/mrc.1260330417
Borgan, 2010, Merging transcriptomics and metabolomics – advances in breast cancer profiling, BMC Cancer, 10, 628, 10.1186/1471-2407-10-628
Bothwell, 2011, An introduction to biological nuclear magnetic resonance spectroscopy, Biol. Rev. Camb. Philos. Soc., 86, 493, 10.1111/j.1469-185X.2010.00157.x
Brauer, 2006, Conservation of the metabolomic response to starvation across two divergent microbes, Proc. Natl. Acad. Sci. U.S.A., 103, 19302, 10.1073/pnas.0609508103
Brazma, 2001, Minimum information about a microarray experiment (MIAME)-toward standards for microarray data, Nat. Genet., 29, 365, 10.1038/ng1201-365
Broadhurst, 2006, Statistical strategies for avoiding false discoveries in metabolomics and related experiments, Metabolomics, 2, 171, 10.1007/s11306-006-0037-z
Burton, 2008, Instrumental and experimental effects in LC – MS-based metabolomics, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 871, 227, 10.1016/j.jchromb.2008.04.044
Bylesjö, 2006, OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification, J. Chemom., 20, 341, 10.1002/cem.1006
Camacho, 2005, The origin of correlations in metabolomics data, Metabolomics, 1, 53, 10.1007/s11306-005-1107-3
Carroll, 2010, The Metabolome Express Project: enabling web-based processing, analysis and transparent dissemination of GC/MS metabolomics datasets, BMC Bioinformatics, 11, 376, 10.1186/1471-2105-11-376
Caspi, 2008, The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases, Nucleic Acids Res., 36, D623, 10.1093/nar/gkm900
Chadeau-Hyam, 2010, Metabolic profiling and the metabolome-wide association study: significance level for biomarker identification, J. Proteome Res., 9, 4620, 10.1021/pr1003449
Chae, 2014, Genomic signatures of specialized metabolism in plants, Science, 344, 510, 10.1126/science.1252076
Chen, 2012, Personal omics profiling reveals dynamic molecular and medical phenotypes, Cell, 148, 1293, 10.1016/j.cell.2012.02.009
Chylla, 2011, Deconvolution of two-dimensional NMR spectra by fast maximum likelihood reconstruction: application to quantitative metabolomics, Anal. Chem., 83, 4871, 10.1021/ac200536b
Clifford, 2009, Alignment using variable penalty dynamic time warping, Anal. Chem., 81, 1000, 10.1021/ac802041e
Cottret, 2010, MetExplore: a web server to link metabolomic experiments and genome-scale metabolic networks, Nucleic Acids Res., 38, W132, 10.1093/nar/gkq312
Craig, 2006, Scaling and normalization effects in NMR spectroscopic metabonomic data sets, Anal. Chem., 78, 2262, 10.1021/ac0519312
Cui, 2008, Metabolite identification via the Madison metabolomics consortium database, Nat. Biotechnol., 26, 162, 10.1038/nbt0208-162
De Meyer, 2008, NMR-based characterization of metabolic alterations in hypertension using an adaptive, intelligent binning algorithm, Anal. Chem., 80, 3783, 10.1021/ac7025964
Delaneau, 2013, Improved whole-chromosome phasing for disease and population genetic studies, Nat. Methods, 10, 5, 10.1038/nmeth.2307
Demirkan, 2012, Genome-wide association study identifies novel loci associated with circulating phospho- and sphingolipid concentrations, PLoS Genet., 8, e1002490, 10.1371/journal.pgen.1002490
Dietrich, 1991, Fast and precise automatic baseline correction of one- and two-dimensional NMR spectra, J. Magn. Reson. (1969), 91, 1, 10.1016/0022-2364(91)90402-F
Du, 2006, Improved peak detection in mass spectrum by incorporating continuous wavelet transform-based pattern matching, Bioinformatics, 22, 2059, 10.1093/bioinformatics/btl355
Du, 2013, Spectral deconvolution for gas chromatography mass spectrometry-based metabolomics: current status and future perspectives, Comput. Struct. Biotechnol. J., 4, e201301013, 10.5936/csbj.201301013
Eden, 2009, GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists, BMC Bioinformatics, 10, 48, 10.1186/1471-2105-10-48
El-Aneed, 2009, Mass spectrometry, review of the basics: electrospray, MALDI, and commonly used mass analyzers, Appl. Spectrosc. Rev., 44, 210, 10.1080/05704920902717872
Ellinger, 2013, Databases and software for NMR-based metabolomics, Curr. Metabolomics, 1, 28, 10.2174/2213235X11301010028
Fernández-Albert, 2014, An R package to analyse LC/MS metabolomic data: MAIT (metabolite automatic identification toolkit), Bioinformatics, 30, 1937, 10.1093/bioinformatics/btu136
Ferreira, 2009, A multivariate test of association, Bioinformatics, 25, 132, 10.1093/bioinformatics/btn563
Fiehn, 2007, The metabolomics standards initiative (MSI), Metabolomics, 3, 175, 10.1007/s11306-007-0070-6
Fonville, 2010, The evolution of partial least squares models and related chemometric approaches in metabonomics and metabolic phenotyping, J. Chemom., 24, 636, 10.1002/cem.1359
Forshed, 2003, Peak alignment of NMR signals by means of a genetic algorithm, Anal. Chim. Acta, 487, 189, 10.1016/S0003-2670(03)00570-1
Fuhrer, 2015, High-throughput discovery metabolomics, Curr. Opin. Biotechnol., 31, 73, 10.1016/j.copbio.2014.08.006
Fukushima, 2013, Recent progress in the development of metabolome databases for plant systems biology, Front. Plant Sci., 4, 73, 10.3389/fpls.2013.00073
Galesloot, 2014, A comparison of multivariate genome-wide association methods, PLoS ONE, 9, e95923, 10.1371/journal.pone.0095923
Gao, 2010, MetScape: a Cytoscape plug-in for visualizing and interpreting metabolomic data in the context of human metabolic networks, Bioinformatics, 26, 971, 10.1093/bioinformatics/btq048
GarcÃa-Alcalde, 2011, Paintomics: a web based tool for the joint visualization of transcriptomics and metabolomics data, Bioinformatics, 27, 137, 10.1093/bioinformatics/btq594
Gaude, 2013, muma, An R package for metabolomics univariate and multivariate statistical analysis, Curr. Metabolomics, 1, 180, 10.2174/2213235X11301020005
Gibbons, 2015, Metabolomics as a tool in nutritional research, Curr. Opin. Lipidol., 26, 30, 10.1097/MOL.0000000000000140
Gieger, 2008, Genetics meets metabolomics: a genome-wide association study of metabolite profiles in human serum, PLoS Genet., 4, e1000282, 10.1371/journal.pgen.1000282
Gika, 2014, Current practice of liquid chromatography – mass spectrometry in metabolomics and metabonomics, J. Pharm. Biomed. Anal., 87, 12, 10.1016/j.jpba.2013.06.032
Gika, 2008, Liquid chromatography and ultra-performance liquid chromatography – mass spectrometry fingerprinting of human urine: sample stability under different handling and storage conditions for metabonomics studies, J. Chromatogr. A, 1189, 314, 10.1016/j.chroma.2007.10.066
Giskeødegård, 2010, Alignment of high resolution magic angle spinning magnetic resonance spectra using warping methods, Anal. Chim. Acta, 683, 1, 10.1016/j.aca.2010.09.026
Goeman, 2004, A global test for groups of genes: testing association with a clinical outcome, Bioinformatics, 20, 93, 10.1093/bioinformatics/btg382
Goodwin, 2014, Phenotypic mapping of metabolic profiles using self-organizing maps of high-dimensional mass spectrometry data, Anal. Chem., 86, 6563, 10.1021/ac5010794
Hao, 2012, BATMAN – an R package for the automated quantification of metabolites from nuclear magnetic resonance spectra using a Bayesian model, Bioinformatics, 28, 2088, 10.1093/bioinformatics/bts308
Hao, 2014, Bayesian deconvolution and quantification of metabolites in complex 1D NMR spectra using BATMAN, Nat. Protoc., 9, 1416, 10.1038/nprot.2014.090
Haug, 2013, MetaboLights – an open-access general-purpose repository for metabolomics studies and associated meta-data, Nucleic Acids Res., 41, D781, 10.1093/nar/gks1004
Hicks, 2009, Genetic determinants of circulating sphingolipid concentrations in European populations, PLoS Genet., 5, e1000672, 10.1371/journal.pgen.1000672
Hiller, 2009, MetaboliteDetector: comprehensive analysis tool for targeted and nontargeted GC/MS based metabolome analysis, Anal. Chem., 81, 3429, 10.1021/ac802689c
Horai, 2010, MassBank: a public repository for sharing mass spectral data for life sciences, J. Mass Spectrom., 45, 703, 10.1002/jms.1777
Howie, 2009, A flexible and accurate genotype imputation method for the next generation of genome-wide association studies, PLoS Genet., 5, e1000529, 10.1371/journal.pgen.1000529
Hummel, 2007, “The Golm Metabolome Database: a database for GC-MS based metabolite profiling,â€, Metabolomics, 75, 10.1007/4735_2007_0229
Hummel, 2008, GlobalANCOVA: exploration and assessment of gene group effects, Bioinformatics, 24, 78, 10.1093/bioinformatics/btm531
Illig, 2010, A genome-wide perspective of genetic variation in human metabolism, Nat. Genet., 42, 137, 10.1038/ng.507
Inouye, 2012, Novel loci for metabolic networks and multi-tissue expression studies reveal genes for atherosclerosis, PLoS Genet., 8, e1002907, 10.1371/journal.pgen.1002907
Jacob, 2013, An efficient spectra processing method for metabolite identification from 1H-NMR metabolomics data, Anal. Bioanal. Chem., 405, 5049, 10.1007/s00216-013-6852-y
Jewison, 2014, SMPDB 2.0: big improvements to the small molecule pathway database, Nucleic Acids Res., 42, D478, 10.1093/nar/gkt1067
Jiang, 2013, Comparisons of five algorithms for chromatogram alignment, Chromatographia, 76, 1067, 10.1007/s10337-013-2513-8
Julià , 2014, Metabolomics in rheumatic diseases, Int. J. Clin. Rheumatol., 9, 353, 10.2217/ijr.14.25
Jung, 2005, Sample size for FDR-control in microarray data analysis, Bioinformatics, 21, 3097, 10.1093/bioinformatics/bti456
Kaddurah-Daouk, 2008, Metabolomics: a global biochemical approach to drug response and disease, Annu. Rev. Pharmacol. Toxicol., 48, 653, 10.1146/annurev.pharmtox.48.113006.094715
Kamburov, 2011, Integrated pathway-level analysis of transcriptomics and metabolomics data with IMPaLA, Bioinformatics, 27, 2917, 10.1093/bioinformatics/btr499
Kanehisa, 2012, KEGG for integration and interpretation of large-scale molecular data sets, Nucleic Acids Res., 40, D109, 10.1093/nar/gkr988
Karakach, 2009, Analysis of time course 1H NMR metabolomics data by multivariate curve resolution, Magn. Reson. Chem., 47, S105, 10.1002/mrc.2535
Karnovsky, 2012, MetScape 2 bioinformatics tool for the analysis and visualization of metabolomics and gene expression data, Bioinformatics, 28, 373, 10.1093/bioinformatics/btr661
Kelder, 2012, WikiPathways: building research communities on biological pathways, Nucleic Acids Res., 40, D1301, 10.1093/nar/gkr1074
Kell, 2014, Metabolomics and systems pharmacology: why and how to model the human metabolic network for drug discovery, Drug Discov. Today, 19, 171, 10.1016/j.drudis.2013.07.014
Kemsley, 1996, Discriminant analysis of high-dimensional data: a comparison of principal components analysis and partial least squares data reduction methods, Chemometr. Intell. Lab. Syst., 33, 47, 10.1186/1471-2105-10-213
Kettunen, 2012, Genome-wide association study identifies multiple loci influencing human serum metabolite levels, Nat. Genet., 44, 269, 10.1038/ng.1073
Khatri, 2012, Ten years of pathway analysis: current approaches and outstanding challenges, PLoS Comput. Biol., 8, e1002375, 10.1371/journal.pcbi.1002375
Kim, 2010, Multivariate classification of urine metabolome profiles for breast cancer diagnosis, BMC Bioinformatics, 11, S4, 10.1186/1471-2105-11-S2-S4
Klei, 2008, Pleiotropy and principal components of heritability combine to increase power for association analysis, Genet. Epidemiol., 32, 9, 10.1002/gepi.20257
Kohl, 2012, State-of-the art data normalization methods improve NMR-based metabolomic analysis, Metabolomics, 8, 146, 10.1007/s11306-011-0350-z
Kohonen, 2000, Self organization of a massive document collection, IEEE Trans. Neural Netw., 11, 574, 10.1109/72.846729
Kolz, 2009, Meta-analysis of 28,141 individuals identifies common variants within five new loci that influence uric acid concentrations, PLoS Genet., 5, e1000504, 10.1371/journal.pgen.1000504
Kotze, 2013, A novel untargeted metabolomics correlation-based network analysis incorporating human metabolic reconstructions, BMC Syst. Biol., 7, 107, 10.1186/1752-0509-7-107
Krumsiek, 2012, Mining the unknown: a systems approach to metabolite identification combining genetic and metabolic information, PLoS Genet., 8, e1003005, 10.1371/journal.pgen.1003005
Krumsiek, 2011, Gaussian graphical modeling reconstructs pathway reactions from high-throughput metabolomics data, BMC Syst. Biol., 5, 21, 10.1186/1752-0509-5-21
Kuhl, 2011, CAMERA: an integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets, Anal. Chem., 84, 283, 10.1021/ac202450g
Kühn, 2012, “Metabolomics in animal breeding,â€, Genetics Meets Metabolomics, 107, 10.1007/978-1-4614-1689-0_8
Kuo, 2013, 3Omics: a web-based systems biology tool for analysis, integration and visualization of human transcriptomic, proteomic and metabolomic data, BMC Syst. Biol., 7, 64, 10.1186/1752-0509-7-64
Langfelder, 2008, WGCNA: an R package for weighted correlation network analysis, BMC Bioinformatics, 9, 559, 10.1186/1471-2105-9-559
Lee, 2004, Beam search for peak alignment of NMR signals, Anal. Chim. Acta, 513, 413, 10.1016/j.aca.2004.02.068
Lewis, 2009, rNMR: open source software for identifying and quantifying metabolites in NMR spectra, Magn. Reson. Chem., 47, S123, 10.1002/mrc.2526
Lommen, 2012, MetAlign 3.0: performance enhancement by efficient use of advances in computer hardware, Metabolomics, 8, 719, 10.1007/s11306-011-0369-1
Ludwig, 2012, Birmingham metabolite library: a publicly accessible database of 1-D 1H and 2-D 1H J-resolved NMR spectra of authentic metabolite standards (BML-NMR), Metabolomics, 8, 8, 10.1007/s11306-011-0347-7
Ludwig, 2011, MetaboLab – advanced NMR data processing and analysis for metabolomics, BMC Bioinformatics, 12, 366, 10.1186/1471-2105-12-366
Luts, 2010, A tutorial on support vector machine-based methods for classification problems in chemometrics, Anal. Chim. Acta, 665, 129, 10.1016/j.aca.2010.03.030
Ma, 2007, The Edinburgh human metabolic network reconstruction and its functional analysis, Mol. Syst. Biol., 3, 135, 10.1038/msb4100177
Madsen, 2010, Chemometrics in metabolomics – A review in human disease diagnosis, Anal. Chim. Acta, 659, 23, 10.1016/j.aca.2009.11.042
Mahadevan, 2008, Analysis of metabolomic data using support vector machines, Anal. Chem., 80, 7562, 10.1021/ac800954c
Mäkinen, 2008, 1H NMR metabonomics approach to the disease continuum of diabetic complications and premature death, Mol. Syst. Biol., 4, 167, 10.1038/msb4100205
Mamas, 2011, The role of metabolites and metabolomics in clinically applicable biomarkers of disease, Arch. Toxicol., 85, 5, 10.1007/s00204-010-0609-6
Marion, 2013, An introduction to biological NMR spectroscopy, Mol. Cell Proteomics, 12, 3006, 10.1074/mcp.O113.030239
Martin, 2010, Chemometric strategy for modeling metabolic biological space along the gastrointestinal tract and assessing microbial influences, Anal. Chem., 82, 9803, 10.1021/ac102015n
McCarthy, 2008, Genome-wide association studies for complex traits: consensus, uncertainty and challenges, Nat. Rev. Genet., 9, 356, 10.1038/nrg2344
Meinicke, 2008, Metabolite-based clustering and visualization of mass spectrometry data using one-dimensional self-organizing maps, Algorithms Mol. Biol., 3, 1, 10.1186/1748-7188-3-9
Melamud, 2010, Metabolomic analysis and visualization engine for LC-MS data, Anal. Chem., 82, 9818, 10.1021/ac1021166
Mercier, 2011, Towards automatic metabolomic profiling of high-resolution one-dimensional proton NMR spectra, J. Biomol. NMR, 49, 307, 10.1007/s10858-011-9480-x
Meyer, 2013, Omics and drug response, Annu. Rev. Pharmacol. Toxicol., 53, 475, 10.1146/annurev-pharmtox-010510-100502
Montoliu, 2009, Multivariate modeling strategy for intercompartmental analysis of tissue and plasma 1H NMR spectrotypes, J. Proteome Res., 8, 2397, 10.1021/pr8010205
Netzer, 2012, A network-based feature selection approach to identify metabolic signatures in disease, J. Theor. Biol., 310, 216, 10.1016/j.jtbi.2012.06.003
Netzer, 2011, Profiling the human response to physical exercise: a computational strategy for the identification and kinetic analysis of metabolic biomarkers, J. Clin. Bioinforma., 1, 34, 10.1186/2043-9113-1-34
Ni, 2012, ADAP-GC 2.0: deconvolution of coeluting metabolites from GC/TOF-MS data for metabolomics studies, Anal. Chem., 84, 6619, 10.1021/ac300898h
Nicholson, 2011, A genome-wide metabolic QTL analysis in Europeans implicates two loci shaped by recent positive selection, PLoS Genet., 7, e1002270, 10.1371/journal.pgen.1002270
Nicholson, 2012, Host-gut microbiota metabolic interactions, Science, 336, 1262, 10.1126/science.1223813
Niu, 2014, Comparative evaluation of eight software programs for alignment of gas chromatography – mass spectrometry chromatograms in metabolomics experiments, J. Chromatogr. A, 1374, 199, 10.1016/j.chroma.2014.11.005
O’reilly, 2012, MultiPhen: joint model of multiple phenotypes can increase discovery in GWAS, PLoS ONE, 7, e34861, 10.1371/journal.pone.0034861
OreÅ¡iÄ, 2009, Metabolomics, a novel tool for studies of nutrition, metabolism and lipid dysfunction, Nutr. Metab. Cardiovasc. Dis., 19, 816, 10.1016/j.numecd.2009.04.018
Patti, 2012, Innovation: metabolomics: the apogee of the omics trilogy, Nat. Rev. Mol. Cell Biol., 13, 263, 10.1038/nrm3314
Peré-Trepat, 2007, Comparison of different multiway methods for the analysis of geographical metal distributions in fish, sediments and river waters in Catalonia, Chemometr. Intell. Lab. Syst., 88, 69, 10.1016/j.chemolab.2006.09.009
Petersen, 2014, Epigenetics meets metabolomics: an epigenome-wide association study with blood serum metabolic traits, Hum. Mol. Genet., 23, 534, 10.1093/hmg/ddt430
Pluskal, 2010, MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data, BMC Bioinformatics, 11, 395, 10.1186/1471-2105-11-395
Putri, 2013, Current metabolomics: technological advances, J. Biosci. Bioeng., 116, 9, 10.1016/j.jbiosc.2013.01.004
Qi, 2014, Plant metabolomics and metabolic biology, J. Integr. Plant Biol., 56, 814, 10.1111/jipb.12247
Rafiei, 2015, Comparison of peak-picking workflows for untargeted liquid chromatography/high-resolution mass spectrometry metabolomics data analysis, Rapid Commun. Mass Spectrom., 29, 119, 10.1002/rcm.7094
Rasmussen, 2011, Standardization of factors that influence human urine metabolomics, Metabolomics, 7, 71, 10.1007/s11306-010-0234-7
Ravanbakhsh, 2014, Accurate, fully-automated NMR spectral profiling for metabolomics, arXiv, 1409
Reiner, 2003, Identifying differentially expressed genes using false discovery rate controlling procedures, Bioinformatics, 19, 368, 10.1093/bioinformatics/btf877
Rhee, 2013, A genome-wide association study of the human metabolome in a community-based cohort, Cell Metab., 18, 130, 10.1016/j.cmet.2013.06.013
Ried, 2012, PSEA: phenotype set enrichment analysis – a new method for analysis of multiple phenotypes, Genet. Epidemiol., 36, 244, 10.1002/gepi.21617
Robertson, 2013, Metabolomics in drug discovery and development, Clin. Pharmacol. Ther., 94, 559, 10.1038/clpt.2013.120
Robin, 2011, pROC: an open-source package for R and S+ to analyze and compare ROC curves, BMC Bioinformatics, 12, 77, 10.1186/1471-2105-12-77
Robinette, 2008, Web server based complex mixture analysis by NMR, Anal. Chem., 80, 3606, 10.1021/ac702530t
Rohn, 2012, VANTED v2: a framework for systems biology applications, BMC Syst. Biol., 6, 139, 10.1186/1752-0509-6-139
Sakurai, 2013, PRIMe update: innovative content for plant metabolomics and integration of gene expression and metabolite accumulation, Plant Cell Physiol., 54, e5, 10.1093/pcp/pcs184
Salek, 2013a, The role of reporting standards for metabolite annotation and identification in metabolomic studies, Gigascience, 2, 13, 10.1186/2047-217X-2-13
Salek, 2013b, The MetaboLights repository: curation challenges in metabolomics, Database (Oxford), 2013, bat029, 10.1093/database/bat029
Savorani, 2010, Icoshift: a versatile tool for the rapid alignment of 1D NMR spectra, J. Magn. Reson., 202, 190, 10.1016/j.jmr.2009.11.012
Shabalin, 2012, Matrix eQTL: ultra fast eQTL analysis via large matrix operations, Bioinformatics, 28, 1353, 10.1093/bioinformatics/bts163
Shin, 2014, An atlas of genetic influences on human blood metabolites, Nat. Genet., 46, 543, 10.1038/ng.2982
Sing, 2005, ROCR: visualizing classifier performance in R, Bioinformatics, 21, 3940, 10.1093/bioinformatics/bti623
Smith, 2006, XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification, Anal. Chem., 78, 779, 10.1021/ac051437y
Smoot, 2011, Cytoscape 2.8: new features for data integration and network visualization, Bioinformatics, 27, 431, 10.1093/bioinformatics/btq675
Sousa, 2013, Optimized bucketing for NMR spectra: three case studies, Chemometr. Intell. Lab. Syst., 122, 93, 10.1016/j.chemolab.2013.01.006
Sreekumar, 2009, Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression, Nature, 457, 910, 10.1038/nature07762
Stein, 1999, An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry data, J. Am. Soc. Mass Spectrom., 10, 770, 10.1016/S1044-0305(99)00047-1
Steinbeck, 2012, MetaboLights: towards a new COSMOS of metabolomics data management, Metabolomics, 8, 757, 10.1007/s11306-012-0462-0
Steinbeck, 2003, NMRShiftDB constructing a free chemical information system with open-source components, J. Chem. Inf. Comput. Sci., 43, 1733, 10.1021/ci0341363
Stephens, 2013, A unified framework for association analysis with multiple related phenotypes, PLoS ONE, 8, e65245, 10.1371/journal.pone.0065245
Steuer, 2006, Review: on the analysis and interpretation of correlations in metabolomic data, Brief. Bioinformatics, 7, 151, 10.1093/bib/bbl009
Steuer, 2003, Observing and interpreting correlations in metabolomic networks, Bioinformatics, 19, 1019, 10.1093/bioinformatics/btg120
Sturm, 2008, OpenMS – an open-source software framework for mass spectrometry, BMC Bioinformatics, 9, 163, 10.1186/1471-2105-9-163
Suhre, 2011a, Human metabolic individuality in biomedical and pharmaceutical research, Nature, 477, 54, 10.1038/nature10354
Suhre, 2011b, A genome-wide association study of metabolic traits in human urine, Nat. Genet., 43, 565, 10.1038/ng.837
Sumner, 2007, Proposed minimum reporting standards for chemical analysis chemical analysis working group (CAWG) metabolomics standards initiative (MSI), Metabolomics, 3, 211, 10.1007/s11306-007-0082-2
Szymanska, 2012, Double-check: validation of diagnostic statistics for PLS-DA models in metabolomics studies, Metabolomics, 8, 3, 10.1007/s11306-011-0330-3
Tanaka, 2009, Genome-wide association study of plasma polyunsaturated fatty acids in the InCHIANTI study, PLoS Genet., 5, e1000338, 10.1371/journal.pgen.1000338
Tapp, 2009, Notes on the practical utility of OPLS, Trends Analyt. Chem., 28, 1322, 10.1016/j.trac.2009.08.006
Tautenhahn, 2008, Highly sensitive feature detection for high resolution LC/MS, BMC Bioinformatics, 9, 504, 10.1186/1471-2105-9-504
Tautenhahn, 2012a, An accelerated workflow for untargeted metabolomics using the METLIN database, Nat. Biotechnol., 30, 826, 10.1038/nbt.2348
Tautenhahn, 2012b, XCMS online: a web-based platform to process untargeted metabolomic data, Anal. Chem., 84, 5035, 10.1021/ac300698c
Tautenhahn, 2010, metaXCMS: second-order analysis of untargeted metabolomics data, Anal. Chem., 83, 696, 10.1021/ac102980g
Theodoridis, 2011, Mass spectrometry-based holistic analytical approaches for metabolite profiling in systems biology studies, Mass Spectrom. Rev., 30, 884, 10.1002/mas.20306
Tomasi, 2004, Correlation optimized warping and dynamic time warping as preprocessing methods for chromatographic data, J. Chemom, 18, 231, 10.1002/cem.859
Townsend, 2013, Reproducibility of metabolomic profiles among men and women in 2 large cohort studies, Clin. Chem., 59, 1657, 10.1373/clinchem.2012.199133
Trygg, 2002, Orthogonal projections to latent structures (O-PLS), J. Chemom., 16, 119, 10.1002/cem.695
Tulpan, 2011, MetaboHunter: an automatic approach for identification of metabolites from 1H-NMR spectra of complex mixtures, BMC Bioinformatics, 12, 400, 10.1186/1471-2105-12-400
Valcárcel, 2011, A differential network approach to exploring differences between biological states: an application to prediabetes, PLoS ONE, 6, e24702, 10.1371/journal.pone.0024702
Van Den Oord, 2008, Controlling false discoveries in genetic studies, Am. J. Med. Genet. B Neuropsychiatr. Genet., 147B, 637, 10.1002/ajmg.b.30650
Van Nederkassel, 2006, A comparison of three algorithms for chromatograms alignment, J. Chromatogr. A, 1118, 199, 10.1016/j.chroma.2006.03.114
Veselkov, 2008, Recursive segment-wise peak alignment of biological 1H NMR spectra for improved metabolic biomarker recovery, Anal. Chem., 81, 56, 10.1021/ac8011544
Vinaixa, 2012, A guideline to univariate statistical analysis for LC/MS-based untargeted metabolomics-derived data, Metabolites, 2, 775, 10.3390/metabo2040775
Vu, 2013, Getting your peaks in line: a review of alignment methods for NMR spectral data, Metabolites, 3, 259, 10.3390/metabo3020259
Vu, 2011, An integrated workflow for robust alignment and simplified quantitative analysis of NMR spectrometry data, BMC Bioinformatics, 12, 405, 10.1186/1471-2105-12-405
Wang, 2009, Automics: an integrated platform for NMR-based metabonomics spectral processing and data analysis, BMC Bioinformatics, 10, 83, 10.1186/1471-2105-10-83
Ward, 2007, Recent applications of NMR spectroscopy in plant metabolomics, FEBS J., 274, 1126, 10.1111/j.1742-4658.2007.05675.x
Weljie, 2006, Targeted profiling: quantitative analysis of 1H NMR metabolomics data, Anal. Chem., 78, 4430, 10.1021/ac060209g
Westerhuis, 2008, Assessment of PLSDA cross validation, Metabolomics, 4, 81, 10.1007/s11306-007-0099-6
Wikoff, 2009, Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites, Proc. Natl. Acad. Sci. U.S.A., 106, 3698, 10.1073/pnas.0812874106
Winnike, 2009, Effects of a prolonged standardized diet on normalizing the human metabolome, Am. J. Clin. Nutr., 90, 1496, 10.3945/ajcn.2009.28234
Wishart, 2008, Quantitative metabolomics using NMR, Trends Analyt. Chem., 27, 228, 10.1016/j.trac.2007.12.001
Wishart, 2013, HMDB 3.0 – the human metabolome database in 2013, Nucleic Acids Res., 41, D801, 10.1093/nar/gks1065
Wishart, 2008, The human cerebrospinal fluid metabolome, J. Chromatogr. B, 871, 164, 10.1016/j.jchromb.2008.05.001
Wold, 1987, Principal component analysis, Chemometr. Intell. Lab. Syst., 2, 37, 10.1016/0169-7439(87)80084-9
Wong, 2005, Application of fast Fourier transform cross-correlation for the alignment of large chromatographic and spectral datasets, Anal. Chem., 77, 5655, 10.1021/ac050619p
Xi, 2008, Baseline correction for NMR spectroscopic metabolomics data analysis, BMC Bioinformatics, 9, 324, 10.1186/1471-2105-9-324
Xia, 2008, MetaboMiner – semi-automated identification of metabolites from 2D NMR spectra of complex biofluids, BMC Bioinformatics, 9, 507, 10.1186/1471-2105-9-507
Xia, 2013, Translational biomarker discovery in clinical metabolomics: an introductory tutorial, Metabolomics, 9, 280, 10.1007/s11306-012-0482-9
Xia, 2012, MetaboAnalyst 2.0 – a comprehensive server for metabolomic data analysis, Nucleic Acids Res., 40, W127, 10.1093/nar/gks374
Xia, 2010a, MetPA: a web-based metabolomics tool for pathway analysis and visualization, Bioinformatics, 26, 2342, 10.1093/bioinformatics/btq418
Xia, 2010b, MSEA: a web-based tool to identify biologically meaningful patterns in quantitative metabolomic data, Nucleic Acids Res., 38, W71, 10.1093/nar/gkq329
Xiao, 2009, An optimized buffer system for NMR-based urinary metabolomics with effective pH control, chemical shift consistency and dilution minimization, Analyst, 134, 916, 10.1039/b818802e
Xie, 2005, A note on using permutation-based false discovery rate estimates to compare different analysis methods for microarray data, Bioinformatics, 21, 4280, 10.1093/bioinformatics/bti685
Yang, 2009, Comparison of public peak detection algorithms for MALDI mass spectrometry data analysis, BMC Bioinformatics, 10, 4, 10.1186/1471-2105-10-4
Yin, 2013, Preanalytical aspects and sample quality assessment in metabolomics studies of human blood, Clin. Chem., 59, 833, 10.1373/clinchem.2012.199257
Zhang, 2012, Modern analytical techniques in metabolomics analysis, Analyst, 137, 293, 10.1039/c1an15605e
Zhang, 2013, Integration of metabolomics and transcriptomics revealed a fatty acid network exerting growth inhibitory effects in human pancreatic cancer, Clin. Cancer Res., 19, 4983, 10.1158/1078-0432.CCR-13-0209
Zhang, 2010, Baseline correction using adaptive iteratively reweighted penalized least squares, Analyst, 135, 1138, 10.1039/b922045c
Zheng, 2011, Identification and quantification of metabolites in 1H NMR spectra by Bayesian model selection, Bioinformatics, 27, 1637, 10.1093/bioinformatics/btr118