Analytical Approach to Approximate the Solution of Volterra and Fredholm Integral Equations

Muhammad Akbar1,2, Rashid Nawaz1, Muhammad Ayaz1, Sumbal Ahsan1, Hijaz Ahmad3
1Department of Mathematics, Abdul Wali Khan University Mardan, Mardan, Pakistan
2Department of Mathematics, Government Degree College Thana, Malakand, Pakistan
3Section of Mathematics, International Telematic University Uninettuno, Rome, Italy

Tóm tắt

The main aim of this work is the use of a semi analytical method to obtain series solution of Volterra and Fredholm integral equations of the second kind, the method so-called homotopy asymptotic method. The reliability and consistency of the proposed method is tested by solving different problems and the obtained results are compared with Expansion Iterative Method (EIM), which shows the effectiveness and accuracy of the proposed technique. Moreover, OHAM does not required discretization like other numerical method and also free from small or large parameter assumption. The present technique uses auxiliary function containing auxiliary constants which control the convergence. OHAM is straight forward and easily implementable.

Tài liệu tham khảo

Bougoffa, L., Mennouni, A., Rach, R.C.: Solving Cauchy integral equations of the first kind by the Adomian decomposition method. Appl. Math. Comput. 219(9), 4423–4433 (2013) Ngarasta, N.: Solving integral equations of the first kind by decomposition method. Kybernetes 38(5), 733–743 (2009) Mirzaei, S.M.: Fredholm integral equations of the first kind solved by using the Homotopy perturbation method. Int. J. Math. Anal. 5(19), 936–938 (2011) Ganji, D.D., Afrouzi, G.A., Hosseinzadeh, H., Talarposhti, R.A.: Application of homotopy-perturbation method to the second kind of nonlinear integral equations. Phys. Lett. A 371(1–2), 20–25 (2007) Zadeh Jafari, H., Karimi, M.: Homotopy analysis method for solving integral and integro differential equations. IJRRAS 2(2), 140–144 (2010) Ahmad, H., Seadawy, A.R., Khan, T.A.: Numerical solution of Korteweg–de Vries-Burgers equation by the modified variational iteration algorithm-II arising in shallow water waves. Phys. Scr. 95(4), 045210 (2020) Ahmad, H., Seadawy, A.R., Khan, T.A., Thounthong, P.: Analytic approximate solutions for some nonlinear Parabolic dynamical wave equations. J. Taibah Univ. Sci. 14(1), 346–358 (2020) Ahmad, H., Khan, T.A., Yao, S.: Numerical solution of second order Painlev e differential equation. J. Math. Comput. Sci. 21(2), 150–157 (2020) Masouri, Z.: Numerical expansion-iterative method for solving second kind Volterra and Fredholm integral equations using block-pulse functions. Adv. Comput. Techn. Electromagn. 2012, 7 (2012) Maleknejad, K., Rostami, Y., Kalalagh, H.S.: Numerical solution for first kind fredholm integral equations by using sinc collocation method. Int. J. Appl. Phys. Math. 6(3), 120–128 (2016) Fahim, A., Araghi, M.A.F., Rashidinia, J., Jalalvand, M.: Numerical solution of Volterra partial integro-differential equations based on sinc-collocation method. Adv. Differ. Equ. 2017(1), 1–21 (2017) Okayama, T., Matsuo, T., Sugihara, M.: Sinc-collocation methods for weakly singular Fredholm integral equations of the second kind. J. Comput. Appl. Math. 234(4), 1211–1227 (2010) Maleknejad, K., Ostadi, A.: Using Sinc-collocation method for solving weakly singular Fredholm integral equations of the first kind. Appl. Anal. 96(4), 702–713 (2017) He, J.H., Taha, M.H., Ramadan, M.A., Moatimid, G.M.: Improved block-pulse functions for numerical solution of mixed Volterra-Fredholm integral equations. Axioms 10(3), 200 (2021) He, J.H.: A simple approach to Volterra-Fredholm integral equations. J. Appl. Comput. Mech. 6(2020), 1184–1186 (2020) Marinca, V., Herişanu, N.: Application of optimal homotopy asymptotic method for solving nonlinear equations arising in heat transfer. Int. Commun. Heat Mass Transf. 35(6), 710–715 (2008) Herişanu, N., Marinca, V., Dordea, T., Madescu, G.: A new analytical approach to nonlinear vibration of an electrical machine. Proc. Rom. Acad. Ser. A 9(3), 229–236 (2008) Almousa, M.S.T., Ismail, A.I.M.: Solution of two-dimensional fredholm integral equations of the first kind by using optimal homotopy asymptitic method. Int. J. Res. Rev. Appl. Sci. 17(3), 354–360 (2013) Khalid, M., Sultana, M., Zaidi, F.: Numerical solution of fourth order integro-differential boundary value problems by optimal homotopy asymptotic method. Int. J. Comput. Appl. 106(2), 38–44 (2014) Hashmi, M.S., Khan, N., Iqbal, S.: Numerical solutions of weakly singular Volterra integral equations using the optimal homotopy asymptotic method. Comput. Math. Appl. 64(6), 1567–1574 (2012) Nawaz, R., Khattak, A., Akbar, M., Ahsan, S., Shah, Z., Khan, A.: Solution of fractional-order integro-differential equations using optimal homotopy asymptotic method. J. Therm. Anal. Calorim. 1–13 (2020) Nawaz, R., Ahsan, S., Akbar, M., Farooq, M., Sulaiman, M., Ullah, H., Islam, S.: Semi analytical solutions of second type of three-dimensional volterra integral equations. Int. J. Appl. Comput. Math. 6(4), 1–16 (2020) Khan, N., Hashmi, M.S., Iqbal, S., Mahmood, T.: Optimal homotopy asymptotic method for solving Volterra integral equation of first kind. Alex. Eng. J. 53(3), 751–755 (2014) Almousa, M., Ismail, A.: Optimal homotopy asymptotic method for solving the linear Fredholm integral equations of the first kind. In: Abstract and Applied Analysis, pp. 1–6. Hindawi, London (2013) Thabet, H., Kendre, S.: Modified least squares homotopy perturbation method for solving fractional partial differential equations. Malaya J. Matematik 6(02), 420–427 (2018) Herisanu, N., Marinca, V., Madescu, G., Dragan, F.: Dynamic response of a permanent magnet synchronous generator to a wind gust. Energies 12(5), 915 (2019)