Analysis of zebrafish cryptochrome 2 and 4 expression in UV cone photoreceptors

Gene Expression Patterns - Tập 35 - Trang 119100 - 2020
Spencer D. Balay1, Sonya A. Widen1,2, Andrew J. Waskiewicz1,2,3
1Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
2Women & Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
3Neuroscience and Mental Health Research Institute, University of Alberta, Edmonton, AB, Canada

Tài liệu tham khảo

Allison, 2004, Visual pigment composition in zebrafish: evidence for a rhodopsin–porphyropsin interchange system, Vis. Neurosci., 21, 945, 10.1017/S0952523804216145 Allison, 2010, Ontogeny of cone photoreceptor mosaics in zebrafish, J. Comp. Neurol., 518, 4182, 10.1002/cne.22447 Arunachalam, 2013, Natural history of zebrafish (Danio rerio) in India, Zebrafish, 10, 1, 10.1089/zeb.2012.0803 Barthel, 2000, [39] in situ hybridization studies of retinal neurons, Methods Enzymol., 316, 579, 10.1016/S0076-6879(00)16751-5 Bazalova, 2016, Cryptochrome 2 mediates directional magnetoreception in cockroaches, Proc. Natl. Acad. Sci. Unit. States Am., 113, 1660, 10.1073/pnas.1518622113 Bischof, 2011, Avian ultraviolet/violet cones as magnetoreceptors: the problem of separating visual and magnetic information, Commun. Integr. Biol., 4, 713, 10.4161/cib.17338 Bottesch, 2016, A magnetic compass that might help coral reef fish larvae return to their natal reef, Curr. Biol., 26, R1267, 10.1016/j.cub.2016.10.051 Bustin, 2009, The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments, Clin. Chem., 55, 611, 10.1373/clinchem.2008.112797 Cahill, 2002, Clock mechanisms in zebrafish, Cell Tissue Res., 309, 27, 10.1007/s00441-002-0570-7 Cermakian, 2002, Light induction of a vertebrate clock gene involves signaling through blue-light receptors and MAP kinases, Curr. Biol., 12, 844, 10.1016/S0960-9822(02)00835-7 Cresci, 2017, Glass eels (Anguilla anguilla) have a magnetic compass linked to the tidal cycle, Sci. Adv., 3, 10.1126/sciadv.1602007 Cresci, 2017, Earth-strength magnetic field affects the rheotactic threshold of zebrafish swimming in shoals, Comp. Biochem. Physiol. Mol. Integr. Physiol., 204, 169, 10.1016/j.cbpa.2016.11.019 Cresci, 2019, Atlantic haddock (Melanogrammus aeglefinus) larvae have a magnetic compass that guides their orientation, iScience, 19, 1173, 10.1016/j.isci.2019.09.001 DeVries, 2002, Electrical coupling between mammalian cones, Curr. Biol., 12, 1900, 10.1016/S0960-9822(02)01261-7 Dixson, 2011 Durif, 2013, Magnetic compass orientation in the European eel, PloS One, 8, 10.1371/journal.pone.0059212 Duval, 2013, Longitudinal fluorescent observation of retinal degeneration and regeneration in zebrafish using fundus lens imaging, Mol. Vis., 19, 1082 Engeszer, 2007, Zebrafish in the wild: a review of natural history and new notes from the field, Zebrafish, 4, 21, 10.1089/zeb.2006.9997 Fleisch, 2013, Targeted mutation of the gene encoding prion protein in zebrafish reveals a conserved role in neuron excitability, Neurobiol. Dis., 55, 11, 10.1016/j.nbd.2013.03.007 Foley, 2011, Human cryptochrome exhibits light-dependent magnetosensitivity, Nat. Commun., 2, 356, 10.1038/ncomms1364 Fraser, 2013, Regeneration of cone photoreceptors when cell ablation is primarily restricted to a particular cone subtype, PloS One, 8, 10.1371/journal.pone.0055410 French, 2009, Gdf6a is required for the initiation of dorsal–ventral retinal patterning and lens development, Dev. Biol., 333, 37, 10.1016/j.ydbio.2009.06.018 Gegear, 2010, Animal cryptochromes mediate magnetoreception by an unconventional photochemical mechanism, Nature, 463, 804, 10.1038/nature08719 Ginzinger, 2002, Gene quantification using real-time quantitative PCR: an emerging technology hits the mainstream, Exp. Hematol., 30, 503, 10.1016/S0301-472X(02)00806-8 Günther, 2018, Double-cone localization and seasonal expression pattern suggest a role in magnetoreception for European robin cryptochrome 4, Curr. Biol., 10.1016/j.cub.2017.12.003 Hagerman, 2016, Rapid recovery of visual function associated with blue cone ablation in zebrafish, PloS One, 11, 10.1371/journal.pone.0166932 Haug, 2015, Eumetazoan cryptochrome phylogeny and evolution, Genome Biol. Evol., 7, 601, 10.1093/gbe/evv010 Hellinger, 2009, Magnetic field perception in the rainbow trout, Oncorhynchus mykiss, J. Comp. Physiol., 195, 873, 10.1007/s00359-009-0466-z Hirayama, 2009, Common light signaling pathways controlling DNA repair and circadian clock entrainment in zebrafish, Cell Cycle, 8, 2794, 10.4161/cc.8.17.9447 Hore, 2016, The radical-pair mechanism of magnetoreception, Annu. Rev. Biophys., 45, 299, 10.1146/annurev-biophys-032116-094545 Hughes, 1998, Cone contributions to the photopic spectral sensitivity of the zebrafish ERG, Vis. Neurosci., 15, 1029, 10.1017/S095252389815602X Karlsson, 2001, Generating transparent zebrafish: a refined method to improve detection of gene expression during embryonic development, Mar. Biotechnol., 3, 522, 10.1007/s1012601-0053-4 Kearse, 2012, Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data, Bioinformatics, 28, 1647, 10.1093/bioinformatics/bts199 Kim, 2016, Recruitment of rod photoreceptors from short-wavelength-sensitive cones during the evolution of nocturnal vision in mammals, Dev. Cell, 37, 520, 10.1016/j.devcel.2016.05.023 Klaassen, 2011, Synaptic transmission from horizontal cells to cones is impaired by loss of connexin hemichannels, PLoS Biol., 9, 10.1371/journal.pbio.1001107 Klaassen, 2016, Specific connectivity between photoreceptors and horizontal cells in the zebrafish retina, J. Neurophysiol., 116, 2799, 10.1152/jn.00449.2016 Kobayashi, 2000, Molecular analysis of zebrafish photolyase/cryptochrome family: two types of cryptochromes present in zebrafish, Gene Cell., 5, 725, 10.1046/j.1365-2443.2000.00364.x Krylov, 2016, Influence of magnetic field on the spatial orientation in zebrafish (Danio rerio), J. Ichthyol., 56, 456, 10.1134/S0032945216030073 Kutta, 2017, Vertebrate cryptochromes are vestigial flavoproteins, Sci. Rep., 7, 44906, 10.1038/srep44906 Lamb, 1976, The relation between intercellular coupling and electrical noise in turtle photoreceptors, J. Physiol. (Lond.), 263, 257, 10.1113/jphysiol.1976.sp011631 Liedvogel, 2007, Chemical magnetoreception: bird cryptochrome 1a is excited by blue light and forms long-lived radical-pairs, PloS One, 2, 10.1371/journal.pone.0001106 Liu, 2015, Molecular evolution and functional divergence of zebrafish (Danio rerio) cryptochrome genes, Sci. Rep., 5, 8113, 10.1038/srep08113 Mei, 2015, Molecular evolution of cryptochromes in fishes, Gene, 574, 112, 10.1016/j.gene.2015.07.086 Myklatun, 2018, Zebrafish and medaka offer insights into the neurobehavioral correlates of vertebrate magnetoreception, Nat. Commun., 9, 802, 10.1038/s41467-018-03090-6 Nießner, 2011, Avian ultraviolet/violet cones identified as probable magnetoreceptors, PloS One, 6, 10.1371/journal.pone.0020091 Nießner, 2013, Magnetoreception: activated cryptochrome 1a concurs with magnetic orientation in birds, J. R. Soc. Interface, 10, 10.1098/rsif.2013.0638 Nießner, 2014, Magnetoreception in birds: I. Immunohistochemical studies concerning the cryptochrome cycle, J. Exp. Biol., 217, 4221, 10.1242/jeb.110965 Nießner, 2016, Cryptochrome 1 in retinal cone photoreceptors suggests a novel functional role in mammals, Sci. Rep., 6, 21848, 10.1038/srep21848 Noel, 2018, Connectivity of cone photoreceptor telodendria in the zebrafish retina, J. Comp. Neurol., 526, 609, 10.1002/cne.24354 O'Connor, 2017, Pre-settlement coral-reef fish larvae respond to magnetic field changes during the day, J. Exp. Biol., 220, 2874, 10.1242/jeb.159491 Osipova, 2016, Influence of magnetic field on zebrafish activity and orientation in a plus maze, Behav. Process., 122, 80, 10.1016/j.beproc.2015.11.009 Ozturk, 2009, Comparative photochemistry of animal type 1 and type 4 cryptochromes, Biochemistry (N.Y.)., 48, 8585, 10.1021/bi901043s Pais-Roldán, 2016, High magnetic field induced otolith fusion in the zebrafish larvae, Sci. Rep., 6, 24151, 10.1038/srep24151 Pinzon-Rodriguez, 2018, Expression patterns of cryptochrome genes in avian retina suggest involvement of Cry4 in light-dependent magnetoreception, J. R. Soc. Interface, 15, 20180058, 10.1098/rsif.2018.0058 Putman, 2013, Evidence for geomagnetic imprinting as a homing mechanism in Pacific salmon, Curr. Biol., 23, 312, 10.1016/j.cub.2012.12.041 Putman, 2018, Geomagnetic field influences upward movement of young Chinook salmon emerging from nests, Biol. Lett., 14, 20170752, 10.1098/rsbl.2017.0752 Qin, 2016, A magnetic protein biocompass, Nat. Mater., 15, 217, 10.1038/nmat4484 Quinn, 1980, Evidence for celestial and magnetic compass orientation in lake migrating sockeye salmon fry, J. Comp. Physiol., 137, 243, 10.1007/BF00657119 Ritz, 2000, A model for photoreceptor-based magnetoreception in birds, Biophys. J., 78, 707, 10.1016/S0006-3495(00)76629-X Robinson, 1993, Zebrafish ultraviolet visual pigment: absorption spectrum, sequence, and localization, Proc. Natl. Acad. Sci. Unit. States Am., 90, 6009, 10.1073/pnas.90.13.6009 Schindelin, 2012, Fiji: an open-source platform for biological-image analysis, Nat. Methods, 9, 676, 10.1038/nmeth.2019 Shcherbakov, 2005, Magnetosensation in zebrafish, Curr. Biol., 15, R162, 10.1016/j.cub.2005.02.039 Smith, 1986, Microcircuitry of the dark-adapted cat retina: functional architecture of the rod-cone network, J. Neurosci., 6, 3505, 10.1523/JNEUROSCI.06-12-03505.1986 Solov'yov, 2014, Chemical compass for bird navigation Spence, 2008, The behaviour and ecology of the zebrafish, Danio rerio, Biol. Rev., 83, 13, 10.1111/j.1469-185X.2007.00030.x Sun, 2018, Transcripts within rod photoreceptors of the Zebrafish retina, BMC Genom., 19, 127, 10.1186/s12864-018-4499-y Takebe, 2012, Zebrafish respond to the geomagnetic field by bimodal and group-dependent orientation, Sci. Rep., 2, 727, 10.1038/srep00727 Tamai, 2004, Early embryonic light detection improves survival, Curr. Biol., 14, R104, 10.1016/j.cub.2004.01.014 Tang, 2007, Validation of zebrafish (Danio rerio) reference genes for quantitative real‐time RT‐PCR normalization, Acta Biochim. Biophys. Sin., 39, 384, 10.1111/j.1745-7270.2007.00283.x Vatine, 2011, It's time to swim! Zebrafish and the circadian clock, FEBS Lett., 585, 1485, 10.1016/j.febslet.2011.04.007 Walker, 1984, Learned magnetic field discrimination in yellowfin tuna, Thunnus albacares, J. Comp. Physiol.: Neuroethol., Sensory, Neural, Behav. Physiol., 155, 673, 10.1007/BF00610853 Ward, 2014, Strong static magnetic fields elicit swimming behaviors consistent with direct vestibular stimulation in adult zebrafish, PloS one, 9, 10.1371/journal.pone.0092109 Westerfield, 2000 White, 2013, The Nitroreductase system of inducible targeted ablation facilitates cell-specific regenerative studies in zebrafish, Methods, 62, 232, 10.1016/j.ymeth.2013.03.017 Whitmore, 2000, Light acts directly on organs and cells in culture to set the vertebrate circadian clock, Nature, 404, 87, 10.1038/35003589 Wiltschko, 2005, Magnetic orientation and magnetoreception in birds and other animals, J. Comp. Physiol., 191, 675, 10.1007/s00359-005-0627-7 Wiltschko, 2009, Directional orientation of birds by the magnetic field under different light conditions, J. R. Soc. Interface Yoshimatsu, 2016, Presynaptic partner selection during retinal circuit reassembly varies with timing of neuronal regeneration in vivo, Nat. Commun., 7, 10590, 10.1038/ncomms10590 Zhou, 2016, Identification of zebrafish magnetoreceptor and cryptochrome homologs, Sci. China Life Sci., 59, 1324, 10.1007/s11427-016-0195-x