Analysis of zebrafish cryptochrome 2 and 4 expression in UV cone photoreceptors
Tài liệu tham khảo
Allison, 2004, Visual pigment composition in zebrafish: evidence for a rhodopsin–porphyropsin interchange system, Vis. Neurosci., 21, 945, 10.1017/S0952523804216145
Allison, 2010, Ontogeny of cone photoreceptor mosaics in zebrafish, J. Comp. Neurol., 518, 4182, 10.1002/cne.22447
Arunachalam, 2013, Natural history of zebrafish (Danio rerio) in India, Zebrafish, 10, 1, 10.1089/zeb.2012.0803
Barthel, 2000, [39] in situ hybridization studies of retinal neurons, Methods Enzymol., 316, 579, 10.1016/S0076-6879(00)16751-5
Bazalova, 2016, Cryptochrome 2 mediates directional magnetoreception in cockroaches, Proc. Natl. Acad. Sci. Unit. States Am., 113, 1660, 10.1073/pnas.1518622113
Bischof, 2011, Avian ultraviolet/violet cones as magnetoreceptors: the problem of separating visual and magnetic information, Commun. Integr. Biol., 4, 713, 10.4161/cib.17338
Bottesch, 2016, A magnetic compass that might help coral reef fish larvae return to their natal reef, Curr. Biol., 26, R1267, 10.1016/j.cub.2016.10.051
Bustin, 2009, The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments, Clin. Chem., 55, 611, 10.1373/clinchem.2008.112797
Cahill, 2002, Clock mechanisms in zebrafish, Cell Tissue Res., 309, 27, 10.1007/s00441-002-0570-7
Cermakian, 2002, Light induction of a vertebrate clock gene involves signaling through blue-light receptors and MAP kinases, Curr. Biol., 12, 844, 10.1016/S0960-9822(02)00835-7
Cresci, 2017, Glass eels (Anguilla anguilla) have a magnetic compass linked to the tidal cycle, Sci. Adv., 3, 10.1126/sciadv.1602007
Cresci, 2017, Earth-strength magnetic field affects the rheotactic threshold of zebrafish swimming in shoals, Comp. Biochem. Physiol. Mol. Integr. Physiol., 204, 169, 10.1016/j.cbpa.2016.11.019
Cresci, 2019, Atlantic haddock (Melanogrammus aeglefinus) larvae have a magnetic compass that guides their orientation, iScience, 19, 1173, 10.1016/j.isci.2019.09.001
DeVries, 2002, Electrical coupling between mammalian cones, Curr. Biol., 12, 1900, 10.1016/S0960-9822(02)01261-7
Dixson, 2011
Durif, 2013, Magnetic compass orientation in the European eel, PloS One, 8, 10.1371/journal.pone.0059212
Duval, 2013, Longitudinal fluorescent observation of retinal degeneration and regeneration in zebrafish using fundus lens imaging, Mol. Vis., 19, 1082
Engeszer, 2007, Zebrafish in the wild: a review of natural history and new notes from the field, Zebrafish, 4, 21, 10.1089/zeb.2006.9997
Fleisch, 2013, Targeted mutation of the gene encoding prion protein in zebrafish reveals a conserved role in neuron excitability, Neurobiol. Dis., 55, 11, 10.1016/j.nbd.2013.03.007
Foley, 2011, Human cryptochrome exhibits light-dependent magnetosensitivity, Nat. Commun., 2, 356, 10.1038/ncomms1364
Fraser, 2013, Regeneration of cone photoreceptors when cell ablation is primarily restricted to a particular cone subtype, PloS One, 8, 10.1371/journal.pone.0055410
French, 2009, Gdf6a is required for the initiation of dorsal–ventral retinal patterning and lens development, Dev. Biol., 333, 37, 10.1016/j.ydbio.2009.06.018
Gegear, 2010, Animal cryptochromes mediate magnetoreception by an unconventional photochemical mechanism, Nature, 463, 804, 10.1038/nature08719
Ginzinger, 2002, Gene quantification using real-time quantitative PCR: an emerging technology hits the mainstream, Exp. Hematol., 30, 503, 10.1016/S0301-472X(02)00806-8
Günther, 2018, Double-cone localization and seasonal expression pattern suggest a role in magnetoreception for European robin cryptochrome 4, Curr. Biol., 10.1016/j.cub.2017.12.003
Hagerman, 2016, Rapid recovery of visual function associated with blue cone ablation in zebrafish, PloS One, 11, 10.1371/journal.pone.0166932
Haug, 2015, Eumetazoan cryptochrome phylogeny and evolution, Genome Biol. Evol., 7, 601, 10.1093/gbe/evv010
Hellinger, 2009, Magnetic field perception in the rainbow trout, Oncorhynchus mykiss, J. Comp. Physiol., 195, 873, 10.1007/s00359-009-0466-z
Hirayama, 2009, Common light signaling pathways controlling DNA repair and circadian clock entrainment in zebrafish, Cell Cycle, 8, 2794, 10.4161/cc.8.17.9447
Hore, 2016, The radical-pair mechanism of magnetoreception, Annu. Rev. Biophys., 45, 299, 10.1146/annurev-biophys-032116-094545
Hughes, 1998, Cone contributions to the photopic spectral sensitivity of the zebrafish ERG, Vis. Neurosci., 15, 1029, 10.1017/S095252389815602X
Karlsson, 2001, Generating transparent zebrafish: a refined method to improve detection of gene expression during embryonic development, Mar. Biotechnol., 3, 522, 10.1007/s1012601-0053-4
Kearse, 2012, Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data, Bioinformatics, 28, 1647, 10.1093/bioinformatics/bts199
Kim, 2016, Recruitment of rod photoreceptors from short-wavelength-sensitive cones during the evolution of nocturnal vision in mammals, Dev. Cell, 37, 520, 10.1016/j.devcel.2016.05.023
Klaassen, 2011, Synaptic transmission from horizontal cells to cones is impaired by loss of connexin hemichannels, PLoS Biol., 9, 10.1371/journal.pbio.1001107
Klaassen, 2016, Specific connectivity between photoreceptors and horizontal cells in the zebrafish retina, J. Neurophysiol., 116, 2799, 10.1152/jn.00449.2016
Kobayashi, 2000, Molecular analysis of zebrafish photolyase/cryptochrome family: two types of cryptochromes present in zebrafish, Gene Cell., 5, 725, 10.1046/j.1365-2443.2000.00364.x
Krylov, 2016, Influence of magnetic field on the spatial orientation in zebrafish (Danio rerio), J. Ichthyol., 56, 456, 10.1134/S0032945216030073
Kutta, 2017, Vertebrate cryptochromes are vestigial flavoproteins, Sci. Rep., 7, 44906, 10.1038/srep44906
Lamb, 1976, The relation between intercellular coupling and electrical noise in turtle photoreceptors, J. Physiol. (Lond.), 263, 257, 10.1113/jphysiol.1976.sp011631
Liedvogel, 2007, Chemical magnetoreception: bird cryptochrome 1a is excited by blue light and forms long-lived radical-pairs, PloS One, 2, 10.1371/journal.pone.0001106
Liu, 2015, Molecular evolution and functional divergence of zebrafish (Danio rerio) cryptochrome genes, Sci. Rep., 5, 8113, 10.1038/srep08113
Mei, 2015, Molecular evolution of cryptochromes in fishes, Gene, 574, 112, 10.1016/j.gene.2015.07.086
Myklatun, 2018, Zebrafish and medaka offer insights into the neurobehavioral correlates of vertebrate magnetoreception, Nat. Commun., 9, 802, 10.1038/s41467-018-03090-6
Nießner, 2011, Avian ultraviolet/violet cones identified as probable magnetoreceptors, PloS One, 6, 10.1371/journal.pone.0020091
Nießner, 2013, Magnetoreception: activated cryptochrome 1a concurs with magnetic orientation in birds, J. R. Soc. Interface, 10, 10.1098/rsif.2013.0638
Nießner, 2014, Magnetoreception in birds: I. Immunohistochemical studies concerning the cryptochrome cycle, J. Exp. Biol., 217, 4221, 10.1242/jeb.110965
Nießner, 2016, Cryptochrome 1 in retinal cone photoreceptors suggests a novel functional role in mammals, Sci. Rep., 6, 21848, 10.1038/srep21848
Noel, 2018, Connectivity of cone photoreceptor telodendria in the zebrafish retina, J. Comp. Neurol., 526, 609, 10.1002/cne.24354
O'Connor, 2017, Pre-settlement coral-reef fish larvae respond to magnetic field changes during the day, J. Exp. Biol., 220, 2874, 10.1242/jeb.159491
Osipova, 2016, Influence of magnetic field on zebrafish activity and orientation in a plus maze, Behav. Process., 122, 80, 10.1016/j.beproc.2015.11.009
Ozturk, 2009, Comparative photochemistry of animal type 1 and type 4 cryptochromes, Biochemistry (N.Y.)., 48, 8585, 10.1021/bi901043s
Pais-Roldán, 2016, High magnetic field induced otolith fusion in the zebrafish larvae, Sci. Rep., 6, 24151, 10.1038/srep24151
Pinzon-Rodriguez, 2018, Expression patterns of cryptochrome genes in avian retina suggest involvement of Cry4 in light-dependent magnetoreception, J. R. Soc. Interface, 15, 20180058, 10.1098/rsif.2018.0058
Putman, 2013, Evidence for geomagnetic imprinting as a homing mechanism in Pacific salmon, Curr. Biol., 23, 312, 10.1016/j.cub.2012.12.041
Putman, 2018, Geomagnetic field influences upward movement of young Chinook salmon emerging from nests, Biol. Lett., 14, 20170752, 10.1098/rsbl.2017.0752
Qin, 2016, A magnetic protein biocompass, Nat. Mater., 15, 217, 10.1038/nmat4484
Quinn, 1980, Evidence for celestial and magnetic compass orientation in lake migrating sockeye salmon fry, J. Comp. Physiol., 137, 243, 10.1007/BF00657119
Ritz, 2000, A model for photoreceptor-based magnetoreception in birds, Biophys. J., 78, 707, 10.1016/S0006-3495(00)76629-X
Robinson, 1993, Zebrafish ultraviolet visual pigment: absorption spectrum, sequence, and localization, Proc. Natl. Acad. Sci. Unit. States Am., 90, 6009, 10.1073/pnas.90.13.6009
Schindelin, 2012, Fiji: an open-source platform for biological-image analysis, Nat. Methods, 9, 676, 10.1038/nmeth.2019
Shcherbakov, 2005, Magnetosensation in zebrafish, Curr. Biol., 15, R162, 10.1016/j.cub.2005.02.039
Smith, 1986, Microcircuitry of the dark-adapted cat retina: functional architecture of the rod-cone network, J. Neurosci., 6, 3505, 10.1523/JNEUROSCI.06-12-03505.1986
Solov'yov, 2014, Chemical compass for bird navigation
Spence, 2008, The behaviour and ecology of the zebrafish, Danio rerio, Biol. Rev., 83, 13, 10.1111/j.1469-185X.2007.00030.x
Sun, 2018, Transcripts within rod photoreceptors of the Zebrafish retina, BMC Genom., 19, 127, 10.1186/s12864-018-4499-y
Takebe, 2012, Zebrafish respond to the geomagnetic field by bimodal and group-dependent orientation, Sci. Rep., 2, 727, 10.1038/srep00727
Tamai, 2004, Early embryonic light detection improves survival, Curr. Biol., 14, R104, 10.1016/j.cub.2004.01.014
Tang, 2007, Validation of zebrafish (Danio rerio) reference genes for quantitative real‐time RT‐PCR normalization, Acta Biochim. Biophys. Sin., 39, 384, 10.1111/j.1745-7270.2007.00283.x
Vatine, 2011, It's time to swim! Zebrafish and the circadian clock, FEBS Lett., 585, 1485, 10.1016/j.febslet.2011.04.007
Walker, 1984, Learned magnetic field discrimination in yellowfin tuna, Thunnus albacares, J. Comp. Physiol.: Neuroethol., Sensory, Neural, Behav. Physiol., 155, 673, 10.1007/BF00610853
Ward, 2014, Strong static magnetic fields elicit swimming behaviors consistent with direct vestibular stimulation in adult zebrafish, PloS one, 9, 10.1371/journal.pone.0092109
Westerfield, 2000
White, 2013, The Nitroreductase system of inducible targeted ablation facilitates cell-specific regenerative studies in zebrafish, Methods, 62, 232, 10.1016/j.ymeth.2013.03.017
Whitmore, 2000, Light acts directly on organs and cells in culture to set the vertebrate circadian clock, Nature, 404, 87, 10.1038/35003589
Wiltschko, 2005, Magnetic orientation and magnetoreception in birds and other animals, J. Comp. Physiol., 191, 675, 10.1007/s00359-005-0627-7
Wiltschko, 2009, Directional orientation of birds by the magnetic field under different light conditions, J. R. Soc. Interface
Yoshimatsu, 2016, Presynaptic partner selection during retinal circuit reassembly varies with timing of neuronal regeneration in vivo, Nat. Commun., 7, 10590, 10.1038/ncomms10590
Zhou, 2016, Identification of zebrafish magnetoreceptor and cryptochrome homologs, Sci. China Life Sci., 59, 1324, 10.1007/s11427-016-0195-x