Analysis of the triply heavy baryon states with the QCD sum rules

Springer Science and Business Media LLC - Tập 31 - Trang 1-10 - 2021
Zhi-Gang Wang1
1Department of PhysicsNorth China Electric Power University, Baoding, People’s Republic of China

Tóm tắt

In this article, we reexamine the mass spectrum of the ground state triply heavy baryon states with the QCD sum rules by carrying out the operator product expansion up to the vacuum condensates of dimension 6 in a consistent way and preforming a novel analysis. It is for the first time to take into account the three-gluon condensates in the QCD sum rules for the triply heavy baryon states.

Tài liệu tham khảo

P. A. Zyla, et al., Review of Particle Physics. Prog. Theor. Exp. Phys. 2020:, 083C01 (2020). R. Aaij, et al., Observation of the doubly charmed baryon \(\Xi _{cc}^{++}\). Phys. Rev. Lett.119:, 112001 (2017). R. Aaij, et al., Observation of structure in the J/ψ-pair mass spectrum. arXiv:2006.16957. M. Padmanath, R. G. Edwards, N. Mathur, M. Peardon, Spectroscopy of triply-charmed baryons from lattice QCD. Phys. Rev. D90:, 074504 (2014). Z. S. Brown, W. Detmold, S. Meinel, K. Orginos, Charmed bottom baryon spectroscopy from lattice QCD. Phys. Rev. D90:, 094507 (2014). K. U. Can, G. Erkol, M. Oka, T. T. Takahashi, Look inside charmed-strange baryons from lattice QCD. Phys. Rev. D92:, 114515 (2015). Y. Namekawa, et al., Charmed baryons at the physical point in 2+1 flavor lattice QCD. Phys. Rev. D87:, 094512 (2013). R. A. Briceno, H. W. Lin, D. R. Bolton, Charmed-Baryon Spectroscopy from Lattice QCD with Nf=2+1+1 Flavors. Phys. Rev. D86:, 094504 (2012). C. Alexandrou, V. Drach, K. Jansen, C. Kallidonis, G. Koutsou, Baryon spectrum with Nf=2+1+1 twisted mass fermions. Phys. Rev. D90:, 074501 (2014). S. Meinel, Excited-state spectroscopy of triply-bottom baryons from lattice QCD. Phys. Rev. D85:, 114510 (2012). N. Mathur, M. Padmanath, S. Mondal, Precise predictions of charmed-bottom hadrons from lattice QCD. Phys. Rev. Lett.121:, 202002 (2018). J. R. Zhang, M. Q. Huang, Deciphering triply heavy baryons in terms of QCD sum rules. Phys. Lett. B674:, 28 (2009). T. M. Aliev, K. Azizi, M. Savci, Properties of triply heavy spin-3/2 baryons. J. Phys. G41:, 065003 (2014). T. M. Aliev, K. Azizi, M. Savci, Masses and Residues of the Triply Heavy Spin-1/2 Baryons. JHEP. 1304:, 042 (2013). Z. G. Wang, Analysis of the Triply Heavy Baryon States with QCD Sum Rules. Commun. Theor. Phys. 58:, 723 (2012). W. Roberts, M. Pervin, Heavy baryons in a quark model. Int. J. Mod. Phys. A23:, 2817 (2008). G. Yang, J. Ping, P. G. Ortega, J. Segovia, Triply heavy baryons in the constituent quark model. Chin. Phys. C44:, 023102 (2020). J. Vijande, A. Valcarce, H. Garcilazo, Constituent-quark model description of triply heavy baryon nonperturbative lattice QCD data. Phys. Rev. D91:, 054011 (2015). K. Thakkar, A. Majethiya, P. C. Vinodkumar, Magnetic moments of baryons containing all heavy quarks in the quark-diquark model. Eur. Phys. J. Plus. 131:, 339 (2016). B. Silvestre-Brac, Spectrum and static properties of heavy baryons. Few Body Syst. 20:, 1 (1996). Y. Jia, Variational study of weakly coupled triply heavy baryons. JHEP. 0610:, 073 (2006). A. Bernotas, V. Simonis, Heavy hadron spectroscopy and the bag model. Lith. J. Phys. 49:, 19 (2009). P. Hasenfratz, R. R. Horgan, J. Kuti, J. M. Richard, Heavy Baryon Spectroscopy in the QCD Bag Model. Phys. Lett. 94B:, 401 (1980). A. P. Martynenko, Ground-state triply and doubly heavy baryons in a relativistic three-quark model. Phys. Lett. B663:, 317 (2008). Z. Shah, A. K. Rai, Masses and Regge trajectories of triply heavy Ωccc and Ωbbb baryons. Eur. Phys. J. A53:, 195 (2017). B. Patel, A. Majethiya, P. C. Vinodkumar, Masses and Magnetic moments of Triply Heavy Flavour Baryons in Hypercentral Model. Pramana. 72:, 679 (2009). S. Migura, D. Merten, B. Metsch, H. R. Petry, Charmed baryons in a relativistic quark model. Eur. Phys. J. A28:, 41 (2006). M. S. Liu, Q. F. Lu, X. H. Zhong, Triply charmed and bottom baryons in a constituent quark model. Phys. Rev. D101:, 074031 (2020). F. J. Llanes-Estrada, O. I. Pavlova, R. Williams, A First Estimate of Triply Heavy Baryon Masses from the pNRQCD Perturbative Static Potential. Eur. Phys. J. C72:, 2019 (2012). J. M. Flynn, E. Hernandez, J. Nieves, Triply Heavy Baryons and Heavy Quark Spin Symmetry. Phys. Rev. D85:, 014012 (2012). M. C. Gordillo, F. De Soto, J. Segovia, Diffusion Monte Carlo calculations of fully-heavy multiquark bound states. arXiv:2009.11889. S. X. Qin, C. D. Roberts, S. M. Schmidt, Spectrum of light- and heavy-baryons. Few Body Syst. 60:, 26 (2019). M. Radin, S. Babaghodrat, M. Monemzadeh, Estimation of heavy baryon masses \(\Omega _{ccc}^{++}\) and \(\Omega _{bbb}^{-}\) by solving the Faddeev equation in a three-dimensional approach. Phys. Rev. D90:, 047701 (2014). P. L. Yin, C. Chen, G. Krein, C. D. Roberts, J. Segovia, S. S. Xu, Masses of ground-state mesons and baryons, including those with heavy quarks. Phys. Rev. D100:, 034008 (2019). L. X. Gutierrez-Guerrero, A. Bashir, M. A. Bedolla, E. Santopinto, Masses of Light and Heavy Mesons and Baryons: A Unified Picture. Phys. Rev. D100:, 114032 (2019). K. W. Wei, B. Chen, X. H. Guo, Masses of doubly and triply charmed baryons. Phys. Rev. D92:, 076008 (2015). K. W. Wei, B. Chen, N. Liu, Q. Q. Wang, X. H. Guo, Spectroscopy of singly, doubly, and triply bottom baryons. Phys. Rev. D95:, 116005 (2017). Z. G. Wang, Analysis of the doubly heavy baryon states and pentaquark states with QCD sum rules. Eur. Phys. J. C78:, 826 (2018). Z. G. Wang, Analysis of the hidden-charm tetraquark mass spectrum with the QCD sum rules. Phys. Rev. D102:, 014018 (2020). Z. G. Wang, Lowest vector tetraquark states: Y(4260/4220) or Zc(4100). Eur. Phys. J. C78:, 933 (2018). Z. G. Wang, Analysis of the vector tetraquark states with P-waves between the diquarks and antidiquarks via the QCD sum rules. Eur. Phys. J. C79:, 29 (2019). Z. G. Wang, T. Huang, The Zb(10610) and Zb(10650) as axial-vector tetraquark states in the QCD sum rules. Nucl. Phys. A930:, 63 (2014). Z. G. Wang, Analysis of the hidden-bottom tetraquark mass spectrum with the QCD sum rules, (2019). Z. G. Wang, Vector hidden-bottom tetraquark candidate: Y(10750). Chin. Phys. C43:, 123102 (2019). Z. G. Wang, Analysis of Pc(4380) and Pc(4450) as pentaquark states in the diquark model with QCD sum rules. Eur. Phys. J. C76:, 70 (2016). Z. G. Wang, T. Huang, Analysis of the \({\frac {1}{2}}^{\pm }\) pentaquark states in the diquark model with QCD sum rules. Eur. Phys. J. C76:, 43 (2016). Z. G. Wang, Analysis of the \({\frac {3}{2}}^{\pm }\) pentaquark states in the diquark-diquark-antiquark model with QCD sum rules. Nucl. Phys. B913:, 163 (2016). Z. G. Wang, Analysis of the Pc(4312),Pc(4440),Pc(4457) and related hidden-charm pentaquark states with QCD sum rules. Int. J. Mod. Phys. A35:, 2050003 (2020). Z. G. Wang, Analysis of the \(QQ\bar {Q}\bar {Q}\) tetraquark states with QCD sum rules. Eur. Phys. J.C77:, 432 (2017). Z. G. Wang, Z. Y. Di, Analysis of the vector and axialvector \(QQ\bar {Q}\bar {Q}\) tetraquark states with QCD sum rules. Acta Phys. Polon. B50:, 1335 (2019). Z. G. Wang, Tetraquark candidates in the LHCb’s di- J/ψ mass spectrum. Chin. Phys. C44:, 113106 (2020). Y. Chung, H. G. Dosch, M. Kremer, D. Schall, Baryon Sum Rules and Chiral Symmetry Breaking. Nucl. Phys. B197:, 55 (1982). E. Bagan, M. Chabab, H. G. Dosch, S. Narison, Baryon sum rules in the heavy quark effective theory. Phys. Lett. B301:, 243 (1993). D. Jido, N. Kodama, M. Oka, Negative parity nucleon resonance in the QCD sum rule. Phys. Rev. D54:, 4532 (1996). Z. G. Wang, Reanalysis of the heavy baryon states \(\Omega _{b}, \Omega _{c}, \Xi ^{\prime }_{b}, \Xi ^{\prime }_{c}, \Sigma _{b}\) and Σc with QCD sum rules. Phys. Lett. pages: (2010). Z. G. Wang, Analysis of the \({\frac {1}{2}}^+\) doubly heavy baryon states with QCD sum rules. Eur. Phys. J.A45:, 267 (2010). Z. G. Wang, Analysis of the \({\frac {3}{2}}^+\) heavy and doubly heavy baryon states with QCD sum rules. Eur. Phys. J. C68:, 459 (2010). Z. G. Wang, Analysis of the \({\frac {1}{2}}^-\) and \({\frac {3}{2}}^-\) heavy and doubly heavy baryon states with QCD sum rules. Eur. Phys. J. A47:, 81 (2011). Z. G. Wang, Analysis of Ωc(3000),Ωc(3050),Ωc(3066),Ωc(3090) and Ωc(3119) with QCD sum rules. Eur. Phys. J. C77:, 325 (2017). M. A. Shifman, A. I. Vainshtein, V. I. Zakharov, QCD and Resonance Physics: Theoretical Foundations. Nucl. Phys. B147:, 385 (1979). M. A. Shifman, A. I. Vainshtein, V. I. Zakharov, QCD and Resonance Physics: Applications. Nucl. Phys. B147:, 448 (1979). L. J. Reinders, H. Rubinstein, S. Yazaki, Hadron Properties from QCD Sum Rules. Phys. Rept. 127:, 1 (1985). P. Colangelo, A. Khodjamirian, QCD sum rules, a modern perspective. hep-ph/0010175. A. M. Sirunyan, et al., Observation of Two Excited Bc+ States and Measurement of the Bc+(2S) in pp Collisions at \(\sqrt {s}= 13 \text {TeV}\). Phys. Rev. Lett. 122:, 132001 (2019). R. Aaij, et al., Observation of an excited Bc+ state. Phys. Rev. Lett. 122:, 232001 (2019). R. Aaij, et al., Model-Independent Observation of Exotic Contributions to B0→J/ψK+π− Decays. Phys. Rev. Lett. 122:, 152002 (2019). L. Maiani, F. Piccinini, A. D. Polosa, V. Riquer, The Z(4430) and a New Paradigm for Spin Interactions in Tetraquarks. Phys. Rev. D89:, 114010 (2014). M. Nielsen, F. S. Navarra, Charged Exotic Charmonium States. Mod. Phys. Lett. A29:, 1430005 (2014). Z. G. Wang, Analysis of the Z(4430) as the first radial excitation of the Zc(3900). Commun. Theor. Phys. 63:, 325 (2015). R. F. Lebed, A. D. Polosa, χc0(3915) As the Lightest \(c\bar c s \bar s\) State. Phys. Rev. D93:, 094024 (2016). Z. G. Wang, Scalar tetraquark state candidates: X(3915), X(4500) and X(4700). Eur. Phys. J. C77:, 78 (2017). Z. G. Wang, Reanalysis of the X(3915), X(4500) and X(4700) with QCD sum rules. Eur. Phys. J. A53:, 19 (2017). H. X. Chen, W. Chen, Settling the Zc(4600) in the charged charmoniumlike family. Phys. Rev. D99:, 074022 (2019). Z. G. Wang, Axialvector tetraquark candidates for Zc(3900),Zc(4020),Zc(4430),Zc(4600). Chin. Phys. C44:, 063105 (2020).