Analysis of the sequence and embryonic expression of chicken neurofibromin mRNA

Springer Science and Business Media LLC - Tập 18 - Trang 267-278 - 1993
Gwen L. Schafer1, Gary Ciment2, Kate M. Stocker2, Lawrence Baizer1
1R. S. Dow Neurological Sciences Institute, Good Samaritan Hospital and Medical Center, Oregon Health Sciences University, Portland
2Department of Cell Biology and Anatomy, Oregon Health Sciences University, Portland

Tóm tắt

Neurofibromatosis type 1 (NF1) is a common inherited disorder that primarily affects tissues derived from the neural crest. Recent identification and characterization of the human NF1 gene has revealed that it encodes a protein (now called neurofibromin) that is similar in sequence to theras-GTPase activator protein (orras-GAP), suggesting that neurofibromin may be a component of cellular signal transduction pathways regulating cellular proliferation and/or differentiation. To initiate investigations on the role of the NF1 gene product in embryonic development, we have isolated a partial cDNA for chicken neurofibromin. Sequence analysis reveals that the predicted amino acid sequence is highly conserved between chick and human. The chicken cDNA hybridizes to a 12.5-kb transcript on RNA blots, a mol wt similar to that reported for the human and murine mRNAs. Ribonuclease protection assays indicate that NF1 mRNA is expressed in a variety of tissues in the chick embryo; this is confirmed byin situ hybridization analysis. NF1 mRNA expression is detectable as early as embryonic stage 18 in the neural plate. This pattern of expression may suggest a role for neurofibromin during normal development, including that of the nervous system.

Tài liệu tham khảo

Baizer L., Stocker K., Alkan S. A., and Ciment G. (1990) Chicken growth-associated protein-(GAP)-43: Primary structure and regulated expression of mRNA during embryogenesis.Mol. Brain Res. 7, 61–68. Ballester R., Marchuk D., Boguski M., Saulino A., Letcher R., Wigler M., and Collins F. (1990) The NF1 locus encodes a protein functionally related to mammalian GAP and yeast IRA proteins.Cell 63, 851–859. Buchberg A. M., Cleveland L. S., Jenkins N. A., and Copeland N. G. (1990) Sequence homology shared by neurofibromatosis type-1 gene and IRA-1 and IRA-2 negative regulators of the RAS cyclic AMP pathway.Nature 347, 291–294. Cawthon R. M., Weiss R., Xu G., Viskochil D., Culver M., Stevens J., Robertson M., Dunn D., Gesteland R., O’Connell P., and White R. (1990) A major segment of the neurofibromatosis type 1 gene: cDNA sequence, genomic structure, and point mutations.Cell 62, 193–201. Chomczynski P. and Sacchi N. (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction.Anal. Biochem. 162, 156–159. Ciment G., Glimelius B., Nelson D., and Weston J. A. (1986) Reversal of a developmental restriction in neural crest-derived cells of avian embryos by a phorbol ester drug.Dev. Biol. 118, 392–398. Ciment G. and Weston J. A. (1982) Early appearance in neural crest and crest-derived cells of an antigenic determinant present in avian neurons.Dev. Biol. 93, 355–367. Daston M. M., Scrable H., Nordlund M., Sturbaum A. K., Nissen L. M., and Ratner N. (1992) The protein product of the neurofibromatosis type 1 gene is expressed at highest abundance in neurons, Schwann cells, and oligodendrocytes.Neuron 8, 415–428. Feinberg A. B. and Vogelstein B. (1983) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity.Anal. Biochem. 132, 6–11. Hall A. (1990) ras and GAP — who’s controlling whom?Cell 61, 921–923. Hamburger V. and Hamilton H. L. (1951) A series of normal stages in the development of the chick embryo.J. Morphol. 88, 49–67. Kusukawa N., Vemori T., Aseda K., and Kato I. (1990) Rapid and reliable protocol for direct sequencing of material amplified by the polymerase chain reaction.Bio Techniques 9, 66–92. LeDouarin N. M. (1982)The Neural Crest. Cambridge University Press, New York. LeDouarin N. M. (1986) Cell line segregation during nervous system ontogeny.Science 231, 1515–1522. Marchuk D. A., Saulino A. M., Tavakkol R., Swaroop M., Wallace M. R., Andersen L. B., Mitchell A. L., Gutman D. H., Boguski M., and Collins F. S. (1991) cDNA cloning of the type 1 neurofibromatosis gene: complete sequence of the NF1 gene product.Genomics 11, 931–940. Martin G. A., Viskochil D., Bollag G., McCabe P. C., Crosier W. J., Haubruck H., Conroy L., Clark R., O’Connell P., Cawthon R. M., Innis M. A., and McCormick F. (1990) The GAP-related domain of the neurofibromatosis type 1 gene product interacts with ras p21.Cell 63, 843–849. McCormick F. (1989) ras GTPase activating protein: signal transmitter and signal terminator.Cell 56, 5–8. Melton D. A., Krieg P. A., Rebagliati M. R., Maniatis T., Zinn K., and Green M. R. (1984) Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage Sp6 promoter.Nucleic. Acids Res. 12, 7035–7056. Orkin S. H. (1986) Reversed genetics.Cell 47, 845–848. Riccardi V. M. and Eichner J. E. (1986)Neurofibromatosis: Phenotype, Natural History, and Pathogenesis. Johns Hopkins University Press, Baltimore, MD. Sambrook J., Fritsch E. F., Maniatis T. (1989)Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY. Sears R. and Ciment G. (1988) Changes in the migratory proerties of neural crest and early neural crest-derived cells in vivo following treatment with a phorbol ester drug.Dev. Biol. 130, 133–143. Stocker K. M., Sherman L., Rees S., and Ciment G. (1991) Basic FGF and TGF β-1 influence commitment to melanogenesis in neural crest-derived cells of avian embryos.Development 111 635–645. Stumpf D. A., Alksne J. F., Annegers J. F., Brown S. S., Conneally P. M., Housman D., Leppert M., Miller J. P., Moss M. L., Pileggi A. J., Rapin I., Strohman R. C., Swanson L. W., and Zimmerman A. (1987) Neurofibromatosis.Arch. Neurol. 45, 575–578. Tanaka K., Matsumoto S., and Toh-e A. (1989) IRA1, an inhibitory regulator of the RAS/cyclic AMP pathway in saccharomyces cerevisiae.Mol. Cell. Biol. 9, 757–768. Tanaka K., Nakafuku M., Satoh T., Marshall M. S., Gibbs J. B., Matsumoto K., Kaziro Y., and Toh-e A. (1990)S. cerevisiae genes IRA1 and IRA2 encode proteins that may be functionally equivalent to mammalian ras GTPase-activating protein.Cell 60, 803–807. Trahey M. and McCormick F. (1987) A cytoplasmic protein stimulates normal N-ras p21 GTPase, but does not affect oncogenic mutants.Science 238, 542–545. Tucker G. C., Aoyama H., Lipinski M., Turz T., and Thiery J. P. (1984) Identical reactivity of monoclonal antibodies HNK-1 and NC-1: Conservation in vertebrates on cells derived from neural primordium and on some leukocytes.Cell Differ. 14, 223–230. Vincent M. and Thiery J. P. (1984) A cell surface marker for neural crest and placodal cells: Further evolution of the peripheral and central nervous system.Dev. Biol. 103, 468–481. Viskochil D., Buchberg A. M., Xu G., Cawthon R. M., Stevens J., Wolff R. K., Culver M., Carey J. C., Copeland N. G., Jenkins N. A., White R., and O’Connell P. (1990) Deletions and a translocation interrupt a cloned gene at the neurofibromatosis type 1 locus.Cell 62, 187–192. Wallace M. R., Marchuk D. A., Andersen L. B., Letcher R., Odeh H. M., Saulino A. M., Fountain J. W., Brereton A., Nicholson J., Mitchell A. L., Brownstein B. H., and Collins F. S. (1990) Type 1 neurofibromatosis gene: identification of a large transcript disrupted in three NF1 patients.Science 249, 181–186. White R., Viskochil D., and O’Connell P. (1991) Identification and characterization of the gene for neurofibromatosis type 1.Curr. Opinion Neurobiol. 1, 462–467. Xu G., O’Connell P., Viskochil D., Cawthon R., Robertson M., Culver M., Dunn D., Stevens J., Gesteland R., White R., and Weiss R. (1990a) The neurofibromatosis type 1 gene encodes a protein related to GAP.Cell 62, 599–608. Xu G., Lin B., Tanaka K., Dunn D., Wood D., Gesteland R., White R., Weiss R., and Tamanoi F. (1990b) The catalytic domain of the neurofibromatosis type 1 gene product stimulates ras GTPase and complements ira mutants ofS. cerevisiae.Cell 63, 835–841.