Analysis of the pressure effect on the local composition in a water-alkanol mixture using Kirkwood-Buff integrals

Springer Science and Business Media LLC - Tập 55 - Trang 263-269 - 2014
D. M. Makarov1, G. I. Egorov1
1Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo, Russia

Tóm tắt

Kirkwood-Buff integrals are calculated from the thermodynamic data for binary mixtures of water with methanol, ethanol, 1-propanol, and 2-propanol at a temperature of 298.15 K in the pressure range from atmospheric to 100 MPa. The values of local compositions Δn ij are calculated which characterize the excess (or deficit) of molecules i around the central molecule j. It is found that the pressure affects destructively the homoassociation in all mixtures studied. In a series MeOH < EtOH < 2-PrOH < 1-PrOH an excess of molecules around the similar type molecules increases in the local environment and the pressure effect on the local composition is enhanced.

Tài liệu tham khảo

J. G. Kirkwood and F. P. Buff, J. Chem. Phys., 19, No. 6, 774 (1951). E. Ruckenstein and I. Shulgin, J. Phys. Chem. B, 104, No. 11, 2540 (2000). E. A. Ploetz and P. E. Smith, J. Chem. Phys., 135, No. 4, 044506-1 (2011). M. C. A. Donkersloot, J. Solution Chem., 8, No. 4, 293 (1979). E. Matteoli and L. Lepori, J. Chem. Phys., 80, No. 6, 2856 (1984). I. Shulgin and E. Ruckenstein, J. Phys. Chem. B, 103, No. 13, 2496 (1999). Y. Marcus, Monatsch. Chem., 132, No. 11, 1387 (2001). A. Perera, F. Sokolić, L. Almásy, and Y. Koga, J. Chem. Phys., 110, No. 25, 12707 (2006). A. Ben-Naim, A. M. Navarro, and J. M. Leal, Phys. Chem. Chem. Phys., 10, No. 18, 2451 (2008). L. Lepori and E. Matteoli, J. Phys. Chem., 92, No. 24, 6997 (1988). A. Ben-Naim, J. Phys. Chem., 93, No. 9, 3809 (1989). A. Ben-Naim, Pure Appl. Chem., 62, 25 (1990). A. M. Zaichikov and M. A. Krest’yaninov, J. Struct. Chem., 50, No. 4, 647–656 (2009). E. Matteoli and L. Lepori, J. Chem. Soc. Faraday Trans., 91, No. 3, 431 (1995). E. Matteoli, J. Phys. Chem. B, 101, No. 47, 9800 (1997). I. L. Shulgin and E. Ruckenstein, J. Phys. Chem. B, 110, No. 25, 12707 (2006). I. L. Shulgin and E. Ruckenstein, Phys. Chem. Chem. Phys., 10, No. 8, 1097 (2008). J. Hu, C. A. Haynes, A. H. Y. Wu, C. M. W. Cheung, M. M. Chen, E. G. M. Yee, T. Ichioka, K. Nishikawa, P. Westh, and Y. Koga, Can. J. Chem., 81, No. 2, 141 (2003). G. C. Benson and O. Kiyohara, J. Solution Chem., 9, No. 10, 791 (1980). A. J. Easteal and L. A. Woolf, J. Chem. Thermodyn., 17, No. 1, 69 (1985). A. J. Easteal and L. A. Woolf, J. Chem. Thermodyn., 17, No. 1, 49 (1985). D. Pečar and V. Doleček, Fluid Phase Equil., 230, Nos. 1/2, 36 (2005). E. Matteoli and L. Lepori, J. Mol. Liq., 47, Nos. 1—3, 89 (1990). Y. Miyamotoa, M. Takemoto, M. Hosokawa, Y. Uosaki, and T. Moriyoshi, J. Chem. Thermodyn., 22, No. 10, 1007 (1990). G. I. Egorov, V. N. Afanas’ev, and A. M. Kolker, Zh. Obshch. Khim., 74, No. 2, 194 (2004). G. I. Egorov and D. M. Makarov, Zh. Fiz. Khim., 82, No. 6, 1175 (2008). A. L. Zaitsev, V. E. Petrenko, and Y. M. Kessler, J. Solution Chem., 18, No. 2, 115 (1989). L. Dougan, S. P. Bates, R. Hargreaves, J. P. Fox, J. Crain, J. L. Finney, V. Réat, and A. K. Soper, J. Chem. Phys., 121, No. 13, 6456 (2004). A. Perera, L. Zoranić, F. Sokolić, and R. Mazighi, J. Mol. Liq., 159, No. 1, 52 (2011). Y. Marcus, Phys. Chem. Chem. Phys., 1, 2975 (1999). H. Hayashi, K. Nishikawa, and T. Iijima, J. Phys. Chem., 94, No. 21, 8334 (1990). K. Yoshida and T. Yamaguchi, Z. Naturforsch., 56a, 529 (2001). A. B. Roney, B. Space, E. W. Castner, R. L. Napoleon, and P. B. Moore, J. Phys. Chem. B, 108, No. 22, 7389 (2004). E. V. Ivanov and V. K. Abrosimov, J. Struct. Chem., 46, No. 5, 856–861 (2005).