Analysis of the mechanisms of bioelectrochemical methane production by mixed cultures

Journal of Chemical Technology and Biotechnology - Tập 90 Số 5 - Trang 963-970 - 2015
Mieke C. A. A. Van Eerten-Jansen1, Nina C. Jansen1, Caroline M. Plugge2, Vinnie de Wilde1, Cees J.N. Buisman1, Annemiek ter Heijne1
1Sub-Department of Environmental Technology, Wageningen University, Bornse Weilanden 9, 6700 AA, Wageningen, The Netherlands
2Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands

Tóm tắt

AbstractBACKGROUNDIn a methane‐producing bioelectrochemical system (BES) microorganisms grow on an electrode and catalyse the conversion of CO2 and electricity into methane. Theoretically, methane can be produced bioelectrochemically from CO2 via direct electron transfer or indirectly via hydrogen, acetate or formate. Understanding the electron transfer mechanisms could give insight into methods to steer the process towards higher rate.RESULTSIn this study, the electron transfer mechanisms of bioelectrochemical methane production by mixed cultures were investigated. At a cathode potential of −0.7 V vs. normal hydrogen electrode (NHE), average current density was 2.9 A m−2 cathode and average methane production rate was 1.8 mole e eq m−2 cathode per day (5.2 L CH4 m−2 cathode per day). Methane was primarily produced indirectly via hydrogen and acetate. Methods to steer towards bioelectrochemical hydrogen and acetate production to further improve the performance of a methane‐producing BES are discussed.CONCLUSIONAt cathode potentials equal to or lower than −0.7 V vs. NHE and using mixed cultures, methane was primarily produced indirectly via hydrogen and acetate. (Bio)electrochemical hydrogen and acetate production rate could be increased by optimizing the cathode design and by enriching the microbial community. Consequently, the production rate of CO2‐neutral methane in a BES could be increased. © 2014 Society of Chemical Industry

Từ khóa


Tài liệu tham khảo

Moomaw W, 2011, IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation

10.1126/science.1217412

10.1021/es801553z

10.1021/es0605016

10.1038/nrmicro1442

10.1038/nrmicro2422

10.1111/j.1758-2229.2010.00211.x

10.1016/j.ijhydene.2005.12.006

10.1021/es803531g

10.1016/j.elecom.2009.07.008

10.1021/es9037963

10.1128/mBio.00103-10

10.1128/AEM.02401-12

10.1021/es902371e

10.1016/j.watres.2012.02.025

10.1002/bit.24520

10.1021/sc300168z

10.1073/pnas.0706379104

10.1021/es071720

Madigan MT, 2012, Brock Biology of Microorganisms

10.1016/j.biortech.2009.12.077

10.1073/pnas.0801290105

10.1016/j.ijhydene.2012.12.107

10.1016/j.ijhydene.2009.03.004

10.1016/j.ijhydene.2009.09.089

10.1016/j.electacta.2008.03.032

10.1016/j.jhazmat.2012.05.032

10.1007/BF00437519

10.1128/br.41.1.100-180.1977

10.1021/es102482j

10.1007/s00253-008-1796-4

10.1016/j.jbiosc.2013.01.001

10.1016/j.ijhydene.2010.06.033

10.1002/er.1954

10.1155/2013/481784

10.1016/j.biortech.2012.11.080

10.1021/sc400520x

10.1021/es062611i

10.1016/j.jelechem.2006.05.013

10.1155/2013/157529

10.1016/j.bioelechem.2009.05.005

10.1016/0013-4686(93)85012-N

10.1016/j.tibtech.2008.11.005

10.1016/j.bios.2009.05.004

10.1111/j.1462-2920.2008.01572.x