Analysis of the behavior of ultra high performance concrete at early age
Tài liệu tham khảo
Graybeal, 2011
Russell, 2013
R. Wendner, A Strauss, Inclined approach slab solution for jointless bridges: performance assessment of the soil structure interaction, J. Perform. Constr. Facil., 29(2), 04014045.
M.H. Hubler, R. Wendner, Z. P. Bažant, Statistical justification of Model B4 for drying and autogenous shrinkage of concrete and comparisons to other models, Mater. Struct., 48(4), 797814.
R. Wendner, M. H. Hubler, Z. P. Bažant, Statistical justification of model B4 for multi decade concrete creep using laboratory and bridge databases and comparisons to other models, Mater. Struct., 48(4), 815833.
A. Strauss, R. Wendner, K. Bergmeister, C. Costa, Numerically and experimentally based reliability assessment of a concrete bridge subjected to chloride induced deterioration, J. Infrastructure Syst., 19(2), 166175.
Chen, 2010
Schauffert, 2012, Lattice discrete particle model for fiber-reinforced concrete. I: theory, J. Eng. Mech. ASCE, 826, 10.1061/(ASCE)EM.1943-7889.0000387
Ulm, 1998, Couplings in early-age concrete: from material modeling to structural design, Int. J. Solids Struct., 35, 4295, 10.1016/S0020-7683(97)00317-X
Byfors, 1980
Regourd, 1980, 65
Ulm, 1995, Modeling of thermo-chemicalmechanical couplings of concrete at early age, J. Eng. Mech. ASCE, 121, 785, 10.1061/(ASCE)0733-9399(1995)121:7(785)
Cervera, 1999, Thermo-chemo-mechanical model for concrete. I: hydration and aging, J. Eng. Mech., 1018, 10.1061/(ASCE)0733-9399(1999)125:9(1018)
Cervera, 2000, Simulation of construction of RCC dams. I: temperature and aging, J. Struct. Eng., 126
Cervera, 2000, Simulation of construction of RCC dams. II: stress and damage, J. Struct. Eng., 126
Cervera, 1999, Thermo-chemo-mechanical model for concrete. II: damage and creep, J. Eng. Mech., 1028, 10.1061/(ASCE)0733-9399(1999)125:9(1028)
Bernard, 2003, A multi scale micromechanics-hydration model for the early-age elastic properties of cement-based materials, Cem. Concr. Res., 33, 1293, 10.1016/S0008-8846(03)00039-5
Lackner, 2004, Chemoplastic material model for the simulation of early-age cracking: from the constitutive law to numerical analyses of massive concrete structures, Cem. Concr. Compos., 26, 551, 10.1016/S0958-9465(03)00071-4
Gawin, 2006, Hygro-thermo-chemo-mechanical modelling of concrete at early ages and beyond, Part I: hydration and hygrothermal phenomena, Int. J. Numer. Methods Eng., 67, 299, 10.1002/nme.1615
Gawin, 2006, Hygro-thermo-chemo-mechanical modelling of concrete at early ages and beyond, Part II: shrinkage and creep of concrete, Int. J. Numer. Methods Eng., 67, 332, 10.1002/nme.1636
Sciume, 2013, A multiphysics model for concrete at early age applied to repairs problems, Eng. Struct., 57, 374, 10.1016/j.engstruct.2013.09.042
Jendele, 2014, Multiscale hydro-thermo-mechanical model for early-age and mature concrete structures, Adv. Eng. Softw., 72, 134, 10.1016/j.advengsoft.2013.05.002
Di Luzio, 2009, Hygro-thermo-chemical modeling of high performance concrete. I: Theory, Cem. Concr. Compos., 31, 301, 10.1016/j.cemconcomp.2009.02.015
Di Luzio, 2009, Hygro-thermo-chemical modeling of high performance concrete. II: numerical implementation, calibration, and validation, Cem. Concr. Compos., 31, 309, 10.1016/j.cemconcomp.2009.02.016
Di Luzio, 2013, Solidification-microprestress-microplane (SMM) theory for concrete at early age: theory, validation and application, Int. J. Solids Struct., 50, 957, 10.1016/j.ijsolstr.2012.11.022
Cusatis, 2011, Lattice discrete particle model (LDPM) for failure behavior of concrete. I: Theory, Cem. Concr. Compos., 33, 881, 10.1016/j.cemconcomp.2011.02.011
Cusatis, 2011, Lattice discrete particle model (LDPM) for failure behavior of concrete. II: calibration and validation, Cem. Concr. Compos., 33, 891, 10.1016/j.cemconcomp.2011.02.010
Powers, 1946, Physical properties of hardened cement paste, Am. Concr. Inst. J. Proc., 18, 250
Mills, 1966, Factors influencing cessation of hydration in water-cured cement pastes, 406
Pantazopoulo, 1995, Microstructural aspects of the mechanical response of plain concrete, ACI Mater. J., 92, 605
Bažant, 1996
Mazloom, 2004, Effect of silica fume on mechanical properties of high-strength concrete, Cem. Concr. Compos., 347, 10.1016/S0958-9465(03)00017-9
Bažant, 1989, Solidification theory for concrete creep. I: formulation, J. Eng. Mech. ASCE, 115, 1691, 10.1061/(ASCE)0733-9399(1989)115:8(1691)
Bentz, 1998, Prediction of adiabatic temperature rise in conventional and high-performance concretes using a 3-D microstructure model, Cem. Concr. Res., 28, 285, 10.1016/S0008-8846(97)00264-0
Jensen, 1996, Autogenous deformation and change of the relative humidity in silica fume-modified cement paste, ACI Mater J., 93, 1
Cusatis, 2010, Discontinuous cell method (DCM) for cohesive fracture propagation, 23
Rezakhani, 2013, Generalized mathematical homogenization of the lattice discrete particle model, 261
Cusatis, 2014, High-order microplane theory for quasi-brittle materials with multiple characteristic lengths, J. Eng. Mech., 140, 04014046, 10.1061/(ASCE)EM.1943-7889.0000747
Cusatis, 2003, Confinement-shear lattice model for concrete damage in tension and compression. I. theory, J. Eng. Mech., 129, 1439, 10.1061/(ASCE)0733-9399(2003)129:12(1439)
Cusatis, 2003, Confinement-shear lattice model for concrete damage in tension and compression. II. computation and validation, J. Eng. Mech., 129, 1449, 10.1061/(ASCE)0733-9399(2003)129:12(1449)
Wan, 2016, A novel material for in situ construction on mars: experiments and numerical simulations, Constr. Build. Mater., 120, 222, 10.1016/j.conbuildmat.2016.05.046
Schauffert, 2012, Lattice discrete particle model for fiber-reinforced concrete. II: tensile fracture and multiaxial loading behavior, J. Eng. Mech. ASCE, 834, 10.1061/(ASCE)EM.1943-7889.0000392
Smith, 2014, Discrete modelling of ultra-high-performance concrete with application to projectile penetration, Int. J. Impact Eng., 65, 13, 10.1016/j.ijimpeng.2013.10.008
Alnaggar, 2012, Automatic parameter identication of discrete mesoscale models with application to the coarse-grained simulation of reinforced concrete structures, vol. 36, 406
Cusatis, 2014, 23
KIm, 1998, Compressive strength development of concrete with different curing time and temperature, Cem. Concr. Res., 28, 1761, 10.1016/S0008-8846(98)00164-1
Kim, 2002, Effect of temperature and aging on the mechanical properties of concrete Part I. Experimental results, Cem. Concr. Res., 32, 1095, 10.1016/S0008-8846(02)00745-7
Karte, 2015, Unloading-based stiffness characterization of cement pastes during the second, third, and fourth day after production, J. Strain, 51, 156, 10.1111/str.12129
Chamrova, 2010
Schutter, 1996, Degree of hydration-based description of mechanical properties of early age concrete, Mater. Structures/Materiaux Constr., 29, 335, 10.1007/BF02486341
Roth, 2009
Yang, 2004, Self-desiccation mechanism of high-performance concrete, J. Zhejiang Univ. Sci., 5, 1517, 10.1631/jzus.2004.1517
Zhang, 2012, Interior relative humidity of normal and high strength concrete at early age, J. Mater. Civ. Eng., 24, 615, 10.1061/(ASCE)MT.1943-5533.0000441
ACI Committee, 2008
Wan, 2016
Schutter, 1997, Fracture energy of concrete at early ages, Mater. Struct. RELIM, 67, 10.1007/BF02486306
Ostergaard, 2004, Early-age stress-crack opening relationships for high performance concrete, Cem. Concr. Compos., 26, 563, 10.1016/S0958-9465(03)00074-X
Gettu, 1998, Effect of aging on the fracture characteristics and brittleness of a high-strength concrete, Cem. Concr. Res., 28, 349, 10.1016/S0008-8846(97)00276-7
Kim, 2004, Fracture characteristics of concrete at early ages, Cem. Concr. Res., 34, 507, 10.1016/j.cemconres.2003.09.011
A. Hillerborg The theoretical basis of a method to determine the fracture energy of concrete. Mater. Struct. 18(4) 291–296.