Analysis of the behavior of ultra high performance concrete at early age

Cement and Concrete Composites - Tập 74 - Trang 120-135 - 2016
Lin Wan1, Roman Wendner2, Benliang Liang3, Gianluca Cusatis4
1Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Rd. A120, Evanston, IL, 60208, USA
2Christian Doppler Laboratory LiCRoFast, Department of Civil Engineering and Natural Hazards, University of Natural Resources and Life Sciences (BOKU) Vienna, Austria
3Department of Architecture and Civil Engineering, Shanghai Normal University, 100 Haisi Rd. Fengxian District, Shanghai, PR China
4Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Rd. A123, Evanston, IL, 60208, USA

Tài liệu tham khảo

Graybeal, 2011 Russell, 2013 R. Wendner, A Strauss, Inclined approach slab solution for jointless bridges: performance assessment of the soil structure interaction, J. Perform. Constr. Facil., 29(2), 04014045. M.H. Hubler, R. Wendner, Z. P. Bažant, Statistical justification of Model B4 for drying and autogenous shrinkage of concrete and comparisons to other models, Mater. Struct., 48(4), 797814. R. Wendner, M. H. Hubler, Z. P. Bažant, Statistical justification of model B4 for multi decade concrete creep using laboratory and bridge databases and comparisons to other models, Mater. Struct., 48(4), 815833. A. Strauss, R. Wendner, K. Bergmeister, C. Costa, Numerically and experimentally based reliability assessment of a concrete bridge subjected to chloride induced deterioration, J. Infrastructure Syst., 19(2), 166175. Chen, 2010 Schauffert, 2012, Lattice discrete particle model for fiber-reinforced concrete. I: theory, J. Eng. Mech. ASCE, 826, 10.1061/(ASCE)EM.1943-7889.0000387 Ulm, 1998, Couplings in early-age concrete: from material modeling to structural design, Int. J. Solids Struct., 35, 4295, 10.1016/S0020-7683(97)00317-X Byfors, 1980 Regourd, 1980, 65 Ulm, 1995, Modeling of thermo-chemicalmechanical couplings of concrete at early age, J. Eng. Mech. ASCE, 121, 785, 10.1061/(ASCE)0733-9399(1995)121:7(785) Cervera, 1999, Thermo-chemo-mechanical model for concrete. I: hydration and aging, J. Eng. Mech., 1018, 10.1061/(ASCE)0733-9399(1999)125:9(1018) Cervera, 2000, Simulation of construction of RCC dams. I: temperature and aging, J. Struct. Eng., 126 Cervera, 2000, Simulation of construction of RCC dams. II: stress and damage, J. Struct. Eng., 126 Cervera, 1999, Thermo-chemo-mechanical model for concrete. II: damage and creep, J. Eng. Mech., 1028, 10.1061/(ASCE)0733-9399(1999)125:9(1028) Bernard, 2003, A multi scale micromechanics-hydration model for the early-age elastic properties of cement-based materials, Cem. Concr. Res., 33, 1293, 10.1016/S0008-8846(03)00039-5 Lackner, 2004, Chemoplastic material model for the simulation of early-age cracking: from the constitutive law to numerical analyses of massive concrete structures, Cem. Concr. Compos., 26, 551, 10.1016/S0958-9465(03)00071-4 Gawin, 2006, Hygro-thermo-chemo-mechanical modelling of concrete at early ages and beyond, Part I: hydration and hygrothermal phenomena, Int. J. Numer. Methods Eng., 67, 299, 10.1002/nme.1615 Gawin, 2006, Hygro-thermo-chemo-mechanical modelling of concrete at early ages and beyond, Part II: shrinkage and creep of concrete, Int. J. Numer. Methods Eng., 67, 332, 10.1002/nme.1636 Sciume, 2013, A multiphysics model for concrete at early age applied to repairs problems, Eng. Struct., 57, 374, 10.1016/j.engstruct.2013.09.042 Jendele, 2014, Multiscale hydro-thermo-mechanical model for early-age and mature concrete structures, Adv. Eng. Softw., 72, 134, 10.1016/j.advengsoft.2013.05.002 Di Luzio, 2009, Hygro-thermo-chemical modeling of high performance concrete. I: Theory, Cem. Concr. Compos., 31, 301, 10.1016/j.cemconcomp.2009.02.015 Di Luzio, 2009, Hygro-thermo-chemical modeling of high performance concrete. II: numerical implementation, calibration, and validation, Cem. Concr. Compos., 31, 309, 10.1016/j.cemconcomp.2009.02.016 Di Luzio, 2013, Solidification-microprestress-microplane (SMM) theory for concrete at early age: theory, validation and application, Int. J. Solids Struct., 50, 957, 10.1016/j.ijsolstr.2012.11.022 Cusatis, 2011, Lattice discrete particle model (LDPM) for failure behavior of concrete. I: Theory, Cem. Concr. Compos., 33, 881, 10.1016/j.cemconcomp.2011.02.011 Cusatis, 2011, Lattice discrete particle model (LDPM) for failure behavior of concrete. II: calibration and validation, Cem. Concr. Compos., 33, 891, 10.1016/j.cemconcomp.2011.02.010 Powers, 1946, Physical properties of hardened cement paste, Am. Concr. Inst. J. Proc., 18, 250 Mills, 1966, Factors influencing cessation of hydration in water-cured cement pastes, 406 Pantazopoulo, 1995, Microstructural aspects of the mechanical response of plain concrete, ACI Mater. J., 92, 605 Bažant, 1996 Mazloom, 2004, Effect of silica fume on mechanical properties of high-strength concrete, Cem. Concr. Compos., 347, 10.1016/S0958-9465(03)00017-9 Bažant, 1989, Solidification theory for concrete creep. I: formulation, J. Eng. Mech. ASCE, 115, 1691, 10.1061/(ASCE)0733-9399(1989)115:8(1691) Bentz, 1998, Prediction of adiabatic temperature rise in conventional and high-performance concretes using a 3-D microstructure model, Cem. Concr. Res., 28, 285, 10.1016/S0008-8846(97)00264-0 Jensen, 1996, Autogenous deformation and change of the relative humidity in silica fume-modified cement paste, ACI Mater J., 93, 1 Cusatis, 2010, Discontinuous cell method (DCM) for cohesive fracture propagation, 23 Rezakhani, 2013, Generalized mathematical homogenization of the lattice discrete particle model, 261 Cusatis, 2014, High-order microplane theory for quasi-brittle materials with multiple characteristic lengths, J. Eng. Mech., 140, 04014046, 10.1061/(ASCE)EM.1943-7889.0000747 Cusatis, 2003, Confinement-shear lattice model for concrete damage in tension and compression. I. theory, J. Eng. Mech., 129, 1439, 10.1061/(ASCE)0733-9399(2003)129:12(1439) Cusatis, 2003, Confinement-shear lattice model for concrete damage in tension and compression. II. computation and validation, J. Eng. Mech., 129, 1449, 10.1061/(ASCE)0733-9399(2003)129:12(1449) Wan, 2016, A novel material for in situ construction on mars: experiments and numerical simulations, Constr. Build. Mater., 120, 222, 10.1016/j.conbuildmat.2016.05.046 Schauffert, 2012, Lattice discrete particle model for fiber-reinforced concrete. II: tensile fracture and multiaxial loading behavior, J. Eng. Mech. ASCE, 834, 10.1061/(ASCE)EM.1943-7889.0000392 Smith, 2014, Discrete modelling of ultra-high-performance concrete with application to projectile penetration, Int. J. Impact Eng., 65, 13, 10.1016/j.ijimpeng.2013.10.008 Alnaggar, 2012, Automatic parameter identication of discrete mesoscale models with application to the coarse-grained simulation of reinforced concrete structures, vol. 36, 406 Cusatis, 2014, 23 KIm, 1998, Compressive strength development of concrete with different curing time and temperature, Cem. Concr. Res., 28, 1761, 10.1016/S0008-8846(98)00164-1 Kim, 2002, Effect of temperature and aging on the mechanical properties of concrete Part I. Experimental results, Cem. Concr. Res., 32, 1095, 10.1016/S0008-8846(02)00745-7 Karte, 2015, Unloading-based stiffness characterization of cement pastes during the second, third, and fourth day after production, J. Strain, 51, 156, 10.1111/str.12129 Chamrova, 2010 Schutter, 1996, Degree of hydration-based description of mechanical properties of early age concrete, Mater. Structures/Materiaux Constr., 29, 335, 10.1007/BF02486341 Roth, 2009 Yang, 2004, Self-desiccation mechanism of high-performance concrete, J. Zhejiang Univ. Sci., 5, 1517, 10.1631/jzus.2004.1517 Zhang, 2012, Interior relative humidity of normal and high strength concrete at early age, J. Mater. Civ. Eng., 24, 615, 10.1061/(ASCE)MT.1943-5533.0000441 ACI Committee, 2008 Wan, 2016 Schutter, 1997, Fracture energy of concrete at early ages, Mater. Struct. RELIM, 67, 10.1007/BF02486306 Ostergaard, 2004, Early-age stress-crack opening relationships for high performance concrete, Cem. Concr. Compos., 26, 563, 10.1016/S0958-9465(03)00074-X Gettu, 1998, Effect of aging on the fracture characteristics and brittleness of a high-strength concrete, Cem. Concr. Res., 28, 349, 10.1016/S0008-8846(97)00276-7 Kim, 2004, Fracture characteristics of concrete at early ages, Cem. Concr. Res., 34, 507, 10.1016/j.cemconres.2003.09.011 A. Hillerborg The theoretical basis of a method to determine the fracture energy of concrete. Mater. Struct. 18(4) 291–296.