Analysis of the X(3960) and related tetraquark molecular states via the QCD sum rules

Qi Xin1, Zhi-Gang Wang1, Xiao‐Song Yang1
1Department of Physics, North China Electric Power University, Baoding, 071003, People’s Republic of China

Tóm tắt

AbstractIn this work, we study the $$D\bar{D}$$ D D ¯ , DD, $$D\bar{D}_s$$ D D ¯ s , $$DD_s$$ D D s , $$D_s\bar{D}_s$$ D s D ¯ s and $$D_sD_s$$ D s D s tetraquark molecular states with the $$J^{PC}=0^{++}$$ J PC = 0 + + via the QCD sum rules. The prediction $$M_{D_s\bar{D}_s} = 3.98\pm 0.10\, \text {GeV}$$ M D s D ¯ s = 3.98 ± 0.10 GeV is in very good agreement with the experimental value $$M_{X(3960)} = 3956 \pm 5\pm 10 \,\text {MeV}$$ M X ( 3960 ) = 3956 ± 5 ± 10 MeV from the LHCb collaboration and supports assigning the X(3960) as the $$D_s^+D_s^-$$ D s + D s - molecular state with the $$J^{PC}=0^{++}$$ J PC = 0 + + . We take account of our previous works on the four-quark states consisting of two color-neutral clusters and acquire the mass spectrum of the ground state hidden-charm and doubly-charm tetraquark molecular states.

Từ khóa


Tài liệu tham khảo

R. Aaij, et al., Amplitude analysis of the $B^+\!\!\to\! D^+D^-K^+$ decay. Phys. Rev. D102, 112003 (2020)

R. Aaij, et al., A model-independent study of resonant structure in $$B^{+} \rightarrow D^{+} D^{-} K^{+}$$ decays. Phys. Rev. Lett. 125, 242001 (2020)

R. Aaij, et al., Observation of a resonant structure near the Ds+Ds− threshold in the $B^{+}\!\!\to\! D_{s}^{+}D_{s}^{-}K^{+}$ decay. arXiv:2210.15153 [hep-ex]

Z. Liu, Four-quark matter—a new era of spectroscopy. AAPPS Bull. 31, 8 (2021)

S. Prelovsek, S. Collins, D. Mohler, M. Padmanath, S. Piemonte, Charmonium-like resonances with JPC = 0++, 2++ in coupled $$D\bar{D}$$, $$D_s \bar{D}_s$$ scattering on the lattice. JHEP 06, 035 (2021)

L. Meng, B. Wang, S.L. Zhu, Predicting the $$\bar{D}_s^{(*)}D_s^{(*)}$$ bound states as the partners of X(3872). Sci. Bull. 66, 1288 (2021)

X.K. Dong, F.K. Guo, B.S. Zou, A survey of heavy-antiheavy hadronic molecules. Progr. Phys. 41, 65 (2021)

J. Nieves, M. Pavon Valderrama, The Heavy Quark Spin Symmetry Partners of the X(3872). Phys. Rev. D86, 056004 (2012)

C. Hidalgo-Duque, J. Nieves, M. Pavon Valderrama, Light flavor and heavy quark spin symmetry in heavy meson molecules. Phys. Rev. D87, 076006 (2013)

T. Ji, X.K. Dong, M. Albaladejo, M.L. Du, F.K. Guo, Establishing the heavy quark spin and light flavor molecular multiplets of the X(3872), Zc(3900), and X(3960). Phys. Rev. D106, 094002 (2022)

D. Gamermann, E. Oset, D. Strottman, M.J. Vicente Vacas, Dynamically generated open and hidden charm meson systems. Phys. Rev. D76, 074016 (2007)

M. Bayar, A. Feijoo, E. Oset, The X(3960) seen in Ds+Ds− as the X(3930) state seen in D+ D−. arXiv: 2207.08490 [hep-ph]

Z.G. Wang, Analysis of the Zc(4020), Zc(4025), Y(4360) and Y(4660) as vector tetraquark states with QCD sum rules. Eur. Phys. J. C74, 2874 (2014)

Z.G. Wang, Analysis of Zcs(3985) as the axialvector tetraquark state. Chin. Phys. C45, 073107 (2021)

Z.G. Wang, Z.H. Yan, Analysis of the scalar, axialvector, vector, tensor doubly charmed tetraquark states with QCD sum rules. Eur. Phys. J. C78, 19 (2018)

Z.G. Wang, Reanalysis of the Y(3940), Y(4140), Zc(4020), Zc(4025) and Zb(10650) as molecular states with QCD sum rules. Eur. Phys. J. C74, 2963 (2014)

Z.G. Wang, Analysis of the Hidden-charm Tetraquark molecule mass spectrum with the QCD sum rules. Int. J. Mod. Phys. A36, 2150107 (2021)

Q. Xin, Z.G. Wang, Analysis of the doubly-charmed tetraquark molecular states with the QCD sum rules. Eur. Phys. J. A58, 110 (2022)

R.M. Albuquerque, J.M. Dias, K.P. Khemchandani, A.M. Torres, F.S. Navarra, M. Nielsen, C.M. Zanetti, QCD sum rules approach to the X, Y and Z states. J. Phys. G46, 093002 (2019)

Q.N. Wang, W. Chen, H.X. Chen, Exotic molecular states and tetraquark states with JP = 0+, 1+, 2+. Chin. Phys. C45, 093102 (2021)

J.R. Zhang, M.Q. Huang, {Q \bar{s}} {\bar{Q}^{(')} s} molecular states in QCD sum rules. Commun. Theor. Phys. 54, 1075 (2010)

R. Albuquerque, S. Narison, D. Rabetiarivony, G. Randriamanatrika, XYZ-SU3 Breakings from Laplace Sum Rules at Higher Orders. Int. J. Mod. Phys. A33, 1850082 (2018)

Z.G. Wang, Landau equation and QCD sum rules for the tetraquark molecular states. Phys. Rev. D101, 074011 (2020)

Z. G. Wang, Comment on "Comment on "Landau equation and QCD sum rules for the tetraquark molecular states"". arXiv:2005.12735 [hep-ph]

M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, QCD and Resonance Physics. Theoretical Foundations. Nucl. Phys. B147, 385 (1979)

M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, QCD and Resonance Physics: Applications. Nucl. Phys. B147, 448 (1979)

L.J. Reinders, H. Rubinstein, S. Yazaki, Hadron Properties from QCD Sum Rules. Phys. Rept. 127, 1 (1985)

P. Colangelo, A. Khodjamirian, QCD sum rules, a modern perspective, hep-ph/0010175

P.A. Zyla, et al., Review of Particle Physics. Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

S. Narison, R. Tarrach, Higher Dimensional Renormalization Group Invariant Vacuum Condensates in Quantum Chromodynamics. Phys. Lett. B125, 217 (1983)

Z.G. Wang, Analysis of the triply-heavy baryon states with the QCD sum rules. AAPPS Bull. 31, 5 (2021)