Analysis of the Interaction of Human Neuroblastoma Cell-Derived Cytochalasin B Induced Membrane Vesicles with Mesenchymal Stem Cells Using Imaging Flow Cytometry

Springer Science and Business Media LLC - Tập 12 - Trang 293-301 - 2022
Valeriya V. Solovyeva1, Kristina V. Kitaeva1, Daria S. Chulpanova1, Svetlana S. Arkhipova1, Ivan Yu. Filin1, Albert A. Rizvanov1
1Kazan Federal University, Kazan, Russia

Tóm tắt

At present, there is an increasing interest in the potential role of extracellular vesicles (EVs), acting as multi-signal messengers of the tumor stroma, in the development and progression of tumor. Tumor cell-derived EVs are considered a potential vector for the targeted delivery of antitumor agents due to the ability to fuse with parental cells through endocytosis and release their contents into the cytoplasm of the recipient cell. Tumor cell-derived EVs could be also used for priming immune cells and therapeutic vaccine development. It is also known that mesenchymal stem cells (MSCs) have a tropism toward tumor niches. It is believed that MSC migration to the tumor is due to its inflammatory signaling. Presumably, with the accumulation of MSCs at tumor sites, these cells differentiate into pericytes or tumor-associated fibroblasts, thereby forming a supporting tumor growth microenvironment. However, besides the ability to promote tumor progression, MSCs can also suppress its growth by inhibiting proliferation and cell cycle progression, and angiogenesis. Thus, the further studies of the MSC role in TME and MSC interaction with other cells of the tumor stroma, including through EVs, are of particular interest. To increase the yield of vesicles the isolation method based on pharmacological disorganization of the actin cytoskeleton induced by treating with cytochalasin B was used in this study. In this investigation the interaction of SH-SY5Y neuroblastoma cell-derived membrane vesicles, obtained using cytochalasin B (CIMVs), with human bone marrow-derived MSCs was analyzed using imaging flow cytometry. Using transmission electron microscopy, it was shown that CIMVs have a size similar to that of natural microvesicles, which is 100–1000 nm. Using imaging flow cytometry, it was shown that after 24 h of co-cultivation 6% of the MSCs contained a large number of CIMVs, and 42% of the MSCs contained a small amount of CIMVs. Cultivation of MSCs with SH-SY5Y cell-derived CIMVs also induced dose-dependent decrease in the expression of CD markers typical for MSCs. Thus, the internalization of SH-SY5Y cell-derived CIMVs within MSCs and the ability of the CIMVs to modulate immunophenotype of the recipient cells were shown. However, further studies are required to determine the effect of CIMVs on pro- or antioncogenic phenotype and function of MSCs.

Tài liệu tham khảo

Chulpanova, D. S., Kitaeva, K. V., James, V., Rizvanov, A. A., & Solovyeva, V. V. (2018). Therapeutic prospects of extracellular vesicles in cancer treatment. Frontiers in Immunology, 9, 1534. https://doi.org/10.3389/fimmu.2018.01534 Lee, Y., El Andaloussi, S., & Wood, M. J. (2012). Exosomes and microvesicles: Extracellular vesicles for genetic information transfer and gene therapy. Human Molecular Genetics, 21(R1), R125-134. https://doi.org/10.1093/hmg/dds317 O'Loghlen, A. (2018). Role for extracellular vesicles in the tumour microenvironment. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 373(1737), 20160488. https://doi.org/10.1098/rstb.2016.0488. Lin, S. K., Moss, A. A., & Riegelman, S. (1977). Iodipamide kinetics: Capacity-limited biliary excretion with simultaneous pseudo-first-order renal excretion. Journal of Pharmaceutical Sciences, 66(12), 1670–1674. Kharaziha, P., Ceder, S., Li, Q., & Panaretakis, T. (2012). Tumor cell-derived exosomes: A message in a bottle. Biochimica et Biophysica Acta, 1826(1), 103–111. https://doi.org/10.1016/j.bbcan.2012.03.006 Zhang, J., Sun, D., Fu, Q., Cao, Q., Zhang, H., & Zhang, K. (2016). Bone mesenchymal stem cells differentiate into myofibroblasts in the tumor microenvironment. Oncology Letters, 12(1), 644–650. https://doi.org/10.3892/ol.2016.4645 Mishra, P. J., Mishra, P. J., Humeniuk, R., Medina, D. J., Alexe, G., Mesirov, J. P., Ganesan, S., Glod, J. W., & Banerjee, D. (2008). Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells. Cancer Research, 68(11), 4331–4339. https://doi.org/10.1158/0008-5472.CAN-08-0943 Quante, M., Tu, S. P., Tomita, H., Gonda, T., Wang, S. S., Takashi, S., Baik, G. H., Shibata, W., Diprete, B., Betz, K. S., Friedman, R., Varro, A., Tycko, B., & Wang, T. C. (2011). Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell, 19(2), 257–272. https://doi.org/10.1016/j.ccr.2011.01.020 Lv, C., Dai, H., Sun, M., Zhao, H., Wu, K., Zhu, J., Wang, Y., Cao, X., Xia, Z., & Xue, C. (2017). Mesenchymal stem cells induce epithelial mesenchymal transition in melanoma by paracrine secretion of transforming growth factor-beta. Melanoma Research, 27(2), 74–84. https://doi.org/10.1097/CMR.0000000000000325 Poggi, A., Varesano, S., & Zocchi, M. R. (2018). How to hit mesenchymal stromal cells and make the tumor microenvironment immunostimulant rather than immunosuppressive. Frontiers in Immunology, 9, 262. https://doi.org/10.3389/fimmu.2018.00262 Poggi, A., & Giuliani, M. (2016). Mesenchymal stromal cells can regulate the immune response in the tumor microenvironment. Vaccines, 4(4), 41. https://doi.org/10.3390/vaccines4040041 Khakoo, A. Y., Pati, S., Anderson, S. A., Reid, W., Elshal, M. F., Rovira, I. I., Nguyen, A. T., Malide, D., Combs, C. A., Hall, G., Zhang, J., Raffeld, M., Rogers, T. B., Stetler-Stevenson, W., Frank, J. A., Reitz, M., & Finkel, T. (2006). Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi’s sarcoma. The Journal of Experimental Medicine, 203(5), 1235–1247. https://doi.org/10.1084/jem.20051921 Qiao, L., Xu, Z., Zhao, T., Zhao, Z., Shi, M., Zhao, R. C., Ye, L., & Zhang, X. (2008). Suppression of tumorigenesis by human mesenchymal stem cells in a hepatoma model. Cell Research, 18(4), 500–507. https://doi.org/10.1038/cr.2008.40 Chulpanova, D. S., Kitaeva, K. V., Tazetdinova, L. G., James, V., Rizvanov, A. A., & Solovyeva, V. V. (2018). Application of mesenchymal stem cells for therapeutic agent delivery in anti-tumor treatment. Frontiers in Pharmacology, 9, 259. https://doi.org/10.3389/fphar.2018.00259 Hill, B. S., Pelagalli, A., Passaro, N., & Zannetti, A. (2017). Tumor-educated mesenchymal stem cells promote pro-metastatic phenotype. Oncotarget, 8(42), 73296–73311. https://doi.org/10.18632/oncotarget.20265 Kidd, S., Spaeth, E., Dembinski, J. L., Dietrich, M., Watson, K., Klopp, A., Battula, V. L., Weil, M., Andreeff, M., & Marini, F. C. (2009). Direct evidence of mesenchymal stem cell tropism for tumor and wounding microenvironments using in vivo bioluminescent imaging. Stem Cells, 27(10), 2614–2623. https://doi.org/10.1002/stem.187 Klopp, A. H., Spaeth, E. L., Dembinski, J. L., Woodward, W. A., Munshi, A., Meyn, R. E., Cox, J. D., Andreeff, M., & Marini, F. C. (2007). Tumor irradiation increases the recruitment of circulating mesenchymal stem cells into the tumor microenvironment. Cancer Research, 67(24), 11687–11695. https://doi.org/10.1158/0008-5472.CAN-07-1406 Chulpanova, D. S., Solovyeva, V. V., Kitaeva, K. V., Dunham, S. P., Khaiboullina, S. F., & Rizvanov, A. A. (2018). Recombinant viruses for cancer therapy Biomedicines, 6(4), 94. https://doi.org/10.3390/biomedicines6040094 Gilazieva, Z. E., Tazetdinova, L. G., Arkhipova, S. S., Solovyeva, V. V., & Rizvanov, A. A. (2016). Effect of cisplatin on ultrastructure and viability of adipose-derived mesenchymal stem cells. BioNanoScience, 6(4), 534–539. https://doi.org/10.1007/s12668-016-0283-0 Gomzikova, M. O., Aimaletdinov, A. M., Bondar, O. V., Starostina, I. G., Gorshkova, N. V., Neustroeva, O. A., Kletukhina, S. K., Kurbangaleeva, S. V., Vorobev, V. V., Garanina, E. E., Persson, J. L., Jeyapalan, J., Mongan, N. P., Khaiboullina, S. F., & Rizvanov, A. A. (2020). Immunosuppressive properties of cytochalasin B-induced membrane vesicles of mesenchymal stem cells: Comparing with extracellular vesicles derived from mesenchymal stem cells. Scientific Reports, 10, 10740. https://doi.org/10.1038/S41598-020-67563-9 Kitaeva, K. V., Prudnikov, T. S., Gomzikova, M. O., Kletukhina, S. K., James, V., Rizvanov, A. A., & Solovyeva, V. V. (2019). Analysis of the interaction and proliferative activity of adenocarcinoma, peripheral blood mononuclear and mesenchymal stromal cells after co-cultivation in vitro. BioNanoScience, 9(2), 502–509. https://doi.org/10.1007/s12668-019-00625-z Solovyeva, V. V., Salafutdinov, I. I., Tazetdinova, L. G., Khaiboullina, S. F., Masgutov, R. F., & Rizvanov, A. A. (2014). Genetic modification of adipose derived stem cells with recombinant plasmid DNA pBud-VEGF-FGF2 results in increased of IL-8 and MCP-1 secretion. Journal of Pure and Applied Microbiology, 8(Spl. Edn. 2), 523–528. Solovyeva, V. V., Kolobynina, K. G., Gomzikova, M. O., Tazetdinova, L. G., Zhuravleva, M. N., Slepak, V. Z., & Rizvanov, A. A. (2015). Effect of tescalcin overexpression on osteogenic differentiation of human mesenchymal stem cells. Genes & Cells, 10(4), 90–93. Gomzikova, M., Kletukhina, S., Kurbangaleeva, S., & Rizvanov, A. (2018). Evaluation of cytochalasin B-induced membrane vesicles fusion specificity with target cells. BioMed Research International, 2018, 7053623. https://doi.org/10.1155/2018/7053623 Rizvanov, A. A., Yalvac, M. E., Shafigullina, A. K., Salafutdinov, I. I., Blatt, N. L., Sahin, F., Kiyasov, A. P., & Palotas, A. (2010). Interaction and self-organization of human mesenchymal stem cells and neuro-blastoma SH-SY5Y cells under co-culture conditions: A novel system for modeling cancer cell micro-environment. European Journal of Pharmaceutics and Biopharmaceutics, 76(2), 253–259. https://doi.org/10.1016/j.ejpb.2010.05.012 Szatanek, R., Baran, J., Siedlar, M., & Baj-Krzyworzeka, M. (2015). Isolation of extracellular vesicles: Determining the correct approach (Review). International Journal of Molecular Medicine, 36(1), 11–17. https://doi.org/10.3892/ijmm.2015.2194 Wu, K., Xing, F., Wu, S. Y., & Watabe, K. (2017). Extracellular vesicles as emerging targets in cancer: Recent development from bench to bedside. Biochimica et Biophysica Acta - Reviews on Cancer, 1868(2), 538–563. https://doi.org/10.1016/j.bbcan.2017.10.001 Chang, C. F., & Li, C. Z. (1986). Experimental studies on the mechanism of anti-platelet aggregation action of motherwort. Zhong Xi Yi Jie He Za Zhi, 6(1), 39–40. Blavier, L., Yang, R. M., & DeClerck, Y. A. (2020). The tumor microenvironment in neuroblastoma: New players, new mechanisms of interaction and new perspectives. Cancers (Basel), 12(10), 2912. https://doi.org/10.3390/cancers12102912 Pick, H., Schmid, E. L., Tairi, A. P., Ilegems, E., Hovius, R., & Vogel, H. (2005). Investigating cellular signaling reactions in single attoliter vesicles. Journal of the American Chemical Society, 127(9), 2908–2912. https://doi.org/10.1021/ja044605x Prada, I., & Meldolesi, J. (2016). Binding and fusion of extracellular vesicles to the plasma membrane of their cell targets. International Journal of Molecular Sciences, 17(8), 1296. https://doi.org/10.3390/ijms17081296 Campos-Silva, C., Suárez, H., Jara-Acevedo, R., Linares-Espinós, E., Martinez-Piñeiro, L., Yáñez-Mó, M., & Valés-Gómez, M. (2019). High sensitivity detection of extracellular vesicles immune-captured from urine by conventional flow cytometry. Scientific Reports, 9(1), 2042. https://doi.org/10.1038/s41598-019-38516-8 Thery, C., et al. (2018). Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 7(1), 1535750. https://doi.org/10.1080/20013078.2018.1535750 Lannigan, J., & Erdbruegger, U. (2017). Imaging flow cytometry for the characterization of extracellular vesicles. Methods, 112, 55–67. https://doi.org/10.1016/j.ymeth.2016.09.018 Mastoridis, S., Bertolino, G. M., Whitehouse, G., Dazzi, F., Sanchez-Fueyo, A., & Martinez-Llordella, M. (2018). Multiparametric analysis of circulating exosomes and other small extracellular vesicles by advanced imaging flow cytometry. Frontiers in Immunology, 9, 1583. https://doi.org/10.3389/fimmu.2018.01583 Haga, H., Yan, I. K., Takahashi, K., Wood, J., Zubair, A., & Patel, T. (2015). Tumour cell-derived extracellular vesicles interact with mesenchymal stem cells to modulate the microenvironment and enhance cholangiocarcinoma growth. Journal of Extracellular Vesicles, 4, 24900. https://doi.org/10.3402/jev.v4.24900 Huang, W. H., Chang, M. C., Tsai, K. S., Hung, M. C., Chen, H. L., & Hung, S. C. (2013). Mesenchymal stem cells promote growth and angiogenesis of tumors in mice. Oncogene, 32(37), 4343–4354. https://doi.org/10.1038/onc.2012.458 Gomzikova, M. O., Zhuravleva, M. N., Miftakhova, R. R., Arkhipova, S. S., Evtugin, V. G., Khaiboullina, S. F., Kiyasov, A. P., Persson, J. L., Mongan, N. P., Pestell, R. G., & Rizvanov, A. A. (2017). Cytochalasin B-induced membrane vesicles convey angiogenic activity of parental cells. Oncotarget, 8(41), 70496–70507. https://doi.org/10.18632/oncotarget.19723 Probert, C., Dottorini, T., Speakman, A., Hunt, S., Nafee, T., Fazeli, A., Wood, S., Brown, J. E., & James, V. (2019). Communication of prostate cancer cells with bone cells via extracellular vesicle RNA. A potential mechanism of metastasis. Oncogene, 38(10), 1751–1763. https://doi.org/10.1038/s41388-018-0540-5 Chulpanova, D. S., Gilazieva, Z. E., Kletukhina, S. K., Aimaletdinov, A. M., Garanina, E. E., James, V., Rizvanov, A. A., & Solovyeva, V. V. (2021). Cytochalasin B-induced membrane vesicles from human mesenchymal stem cells overexpressing IL2 are able to stimulate CD8+ T-killers to kill human triple negative breast cancer cells. Biology (Basel), 10(2), 141. https://doi.org/10.3390/biology10020141 Chulpanova, D. S., Solovyeva, V. V., James, V., Arkhipova, S. S., Gomzikova, M. O., Garanina, E. E., Akhmetzyanova, E. R., Tazetdinova, L. G., Khaiboullina, S. F., & Rizvanov, A. A. (2020). Human mesenchymal stem cells overexpressing interleukin 2 can suppress proliferation of neuroblastoma cells in co-culture and activate mononuclear cells in vitro. Bioengineering (Basel), 7(2), 59. https://doi.org/10.3390/bioengineering7020059