Analysis of synaptic transmission in Caenorhabditis elegans using an aldicarb-sensitivity assay

Nature Protocols - Tập 1 Số 4 - Trang 1772-1777 - 2006
Timothy R. Mahoney1, Shuo Luo2, Michael L. Nonet2
1Dept. of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
2Department of Anatomy and Neurobiology, Washington University School of Medicine, St Louis, USA.

Tóm tắt

Từ khóa


Tài liệu tham khảo

Sudhof, T.C. The synaptic vesicle cycle. Annu. Rev. Neurosci. 27, 509–547 (2004).

White, J.G., Southgate, E., Thomson, J.N. & Brenner, S. The Structure of the Nervous System of the Nematode Caenorhabditis elegans. Philos. Trans. R. Soc. Lond. B Biol. Sci. 314, 1–340 (1986).

Bargmann, C.I. Genetic and cellular analysis of behavior in C. elegans. Annu. Rev. Neurosci. 16, 47–71 (1993).

Von Stetina, S.E., Treinin, M. & Miller, D.M. 3rd. The motor circuit. Int. Rev. Neurobiol. 69, 125–167 (2006).

Johnson, C.D. & Russell, R.L. Multiple molecular forms of acetylcholinesterase in the nematode Caenorhabditis elegans. J. Neurochem. 41, 30–46 (1983).

Lue, L.P., Lewis, C.C. & Melchor, V.E. The effect of aldicarb on nematode population and its persistence in carrots, soil and hydroponic solution. J. Environ. Sci. Health B 19, 343–354 (1984).

Nguyen, M., Alfonso, A., Johnson, C.D. & Rand, J.B. Caenorhabditis elegans mutants resistant to inhibitors of acetylcholinesterase. Genetics 140, 527–535 (1995).

Jorgensen, E.M. et al. Defective recycling of synaptic vesicles in synaptotagmin mutants of Caenorhabditis elegans. Nature 378, 196–199 (1995).

Miller, K.G. et al. A genetic selection for Caenorhabditis elegans synaptic transmission mutants. Proc. Natl. Acad. Sci. USA 93, 12593–12598 (1996).

Nurrish, S., Segalat, L. & Kaplan, J.M. Serotonin inhibition of synaptic transmission: Galpha(0) decreases the abundance of UNC-13 at release sites. Neuron 24, 231–242 (1999).

Iwasaki, K., Staunton, J., Saifee, O., Nonet, M. & Thomas, J.H. aex-3 encodes a novel regulator of presynaptic activity in C. elegans. Neuron 18, 613–622 (1997).

Zhen, M. & Jin, Y. The liprin protein SYD-2 regulates the differentiation of presynaptic termini in C. elegans. Nature 401, 371–375 (1999).

Koushika, S.P. et al. A post-docking role for active zone protein Rim. Nat. Neurosci. 4, 997–1005 (2001).

Sieburth, D. et al. Systematic analysis of genes required for synapse structure and function. Nature 436, 510–517 (2005).

Deken, S.L. et al. Redundant localization mechanisms of RIM and ELKS in Caenorhabditis elegans. J. Neurosci. 25, 5975–5983 (2005).

Mahoney, T.R. et al. Regulation of synaptic transmission by RAB-3 and RAB-27 in Caenorhabditis elegans. Mol. Biol. Cell 17, 2617–2625 (2006).

Lackner, M.R., Nurrish, S.J. & Kaplan, J.M. Facilitation of synaptic transmission by EGL-30 Gqalpha and EGL-8 PLCbeta: DAG binding to UNC-13 is required to stimulate acetylcholine release. Neuron 24, 335–346 (1999).

Nonet, M.L. et al. Caenorhabditis elegans rab-3 mutant synapses exhibit impaired function and are partially depleted of vesicles. J. Neurosci. 17, 8061–8073 (1997).

Charlie, N.K., Schade, M.A., Thomure, A.M. & Miller, K.G. Presynaptic UNC-31 (CAPS) is required to activate the G alpha(s) pathway of the Caenorhabditis elegans synaptic signaling network. Genetics 172, 943–961 (2006).

Miller, K.G., Emerson, M.D. & Rand, J.B. Goa and diacylglycerol kinase negatively regulate the Gqa pathway in C. elegans. Neuron 24, 323–333 (1999).

Lewis, J.A., Wu, C.H., Levine, J.H. & Berg, H. Levamisole-resistant mutants of the nematode Caenorhabditis elegans appear to lack pharmacological acetylcholine receptors. Neuroscience 5, 967–989 (1980).

Lewis, J.A., Wu, C.H., Berg, H. & Levine, J.H. The genetics of levamisole resistance in the nematode Caenorhabditis elegans. Genetics 95, 905–928 (1980).

Nonet, M.L., Grundahl, K., Meyer, B.J. & Rand, J.B. Synaptic function is impaired but not eliminated in C. elegans mutants lacking synaptotagmin. Cell 73, 1291–1305 (1993).

Gottschalk, A. et al. Identification and characterization of novel nicotinic receptor-associated proteins in Caenorhabditis elegans. EMBO J. 24, 2566–2578 (2005).

Touroutine, D. et al. acr-16 encodes an essential subunit of the levamisole-resistant nicotinic receptor at the Caenorhabditis elegans neuromuscular junction. J. Biol. Chem. 280, 27013–27021 (2005).

Doi, M. & Iwasaki, K. Regulation of retrograde signaling at neuromuscular junctions by the novel C2 domain protein AEX-1. Neuron 33, 249–259 (2002).

Zhao, H. & Nonet, M.L. A retrograde signal is involved in activity-dependent remodeling at a C. elegans neuromuscular junction. Development 127, 1253–1266 (2000).

Richmond, J.E., Davis, W.S. & Jorgensen, E.M. UNC-13 is required for synaptic vesicle fusion in C. elegans. Nat. Neurosci. 2, 959–964 (1999).

Weimer, R.M. et al. Defects in synaptic vesicle docking in unc-18 mutants. Nat. Neurosci. 6, 1023–1030 (2003).

Charlie, N.K., Thomure, A.M., Schade, M.A. & Miller, K.G. The Dunce cAMP phosphodiesterase PDE-4 negatively regulates G alpha(s)-dependent and G alpha(s)-independent cAMP pools in the Caenorhabditis elegans synaptic signaling network. Genetics 173, 111–130 (2006).

Cai, T., Fukushige, T., Notkins, A.L. & Krause, M. Insulinoma-associated protein IA-2, a vesicle transmembrane protein, genetically interacts with UNC-31/CAPS and affects neurosecretion in Caenorhabditis elegans. J. Neurosci. 24, 3115–3124 (2004).

Mathews, E.A. et al. Critical residues of the Caenorhabditis elegans unc-2 voltage-gated calcium channel that affect behavioral and physiological properties. J. Neurosci. 23, 6537–6545 (2003).

Salcini, A.E. et al. The Eps15 C. elegans homologue EHS-1 is implicated in synaptic vesicle recycling. Nat. Cell Biol. 3, 755–760 (2001).

Hawasli, A.H., Saifee, O., Liu, C., Nonet, M.L. & Crowder, C.M. Resistance to volatile anesthetics by mutations enhancing excitatory neurotransmitter release in Caenorhabditis elegans. Genetics 168, 831–843 (2004).

Davies, A.G. et al. A central role of the BK potassium channel in behavioral responses to ethanol in C. elegans. Cell 115, 655–666 (2003).

Lewis, J.A. & Fleming, J.T. Basic culture methods. Methods Cell Biol. 48, 3–29 (1995).

Hope, I.A. C elegans : a practical approach. (Oxford University Press, New York, 1999).

Wood, W.B. The nematode Caenorhabditis elegans. (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1988).

Riddle, D.L. C. elegans II.. (Cold Spring Harbor Laboratory Press, Plainview, NY, 1997).

Wang, Z.W., Saifee, O., Nonet, M.L. & Salkoff, L. SLO-1 potassium channels control quantal content of neurotransmitter release at the C. elegans neuromuscular junction. Neuron 32, 867–881 (2001).

Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

Gracheva, E.O. et al. Tomosyn inhibits synaptic vesicle priming in Caenorhabditis elegans. PLoS. Biol. 4, e261 (2006).

Dybbs, M., Ngai, J. & Kaplan, J.M. Using microarrays to facilitate positional cloning: identification of tomosyn as an inhibitor of neurosecretion. PLoS. Genet. 1, 6–16 (2005).

McEwen, J.M., Madison, J.M., Dybbs, M. & Kaplan, J.M. Antagonistic regulation of synaptic vesicle priming by tomosyn and UNC-13. Neuron 51, 303–315 (2006).