Analysis of sub-daily polar motion derived from GPS with different temporal resolutions

GPS Solutions - Tập 28 - Trang 1-13 - 2023
Yaquan Peng1, Yidong Lou1, Xiaolei Dai1, Chuang Shi2
1GNSS Research Center, Wuhan University, Wuhan, China
2School of Electronic and Information Engineering, Beihang University, Beijing, China

Tóm tắt

This study investigates the sub-daily polar motion (PM) derived from different estimation interval solutions ranging from 5 min/2 h. By analyzing a 3-year continuous time series of the PM estimates using Global Positioning System (GPS) observations, we conclude that PM should be parameterized as piecewise constant for intervals no longer than 30 min, while piecewise linear parameterization is more appropriate for longer intervals. The inconsistencies between the estimates and the background sub-daily PM model become more pronounced as the estimation intervals become shorter. The results demonstrate that applying continuity constraints enhances the accuracy of PM rate parameter estimation by approximately 20%. However, it is noteworthy that continuity constraints significantly modify and smooth the high-frequency content of the signal in PM. Therefore, when employing piecewise linear estimation, it is not recommended to use continuity constraints. Moreover, we find that sub-daily PM estimates are influenced by artificial signals, primarily caused by the resonance between the earth rotation and satellite revolution periods. These resonance signals are more obvious as the estimation interval becomes shorter, particularly at 4.8 and 8-h periods in the prograde and retrograde spectra, respectively. Finally, we implemented a sub-daily PM series with a 5-min temporal resolution and examined the recovery of the tidal coefficients for 38 tides. Overall, the residual signal amplitudes were generally small, with most of the main ocean tides below 5 μas. The largest residual signals were observed for S1 and K1 terms, with amplitudes of 13.1 and 18.0 μas, respectively.

Tài liệu tham khảo

Arnold D, Meindl M, Beutler G, Dach R, Schaer S, Lutz S, Prange L, Sośnica K, Mervart L, Jäggi A (2015) CODE’s new solar radiation pressure model for GNSS orbit determination. J Geod 89(8):775–791. https://doi.org/10.1007/s00190-015-0814-4 Artz T, Bernhard L, Nothnagel A, Steigenberger P, Tesmer S (2012) Methodology for the combination of sub-daily Earth rotation from GPS and VLBI observations. J Geod 86(3):221–239. https://doi.org/10.1007/s00190-011-0512-9 Boehm J, Niell A, Tregoning P, Schuh H (2006) Global Mapping Function (GMF): a new empirical mapping function based on numerical weather model data. Geophys Res Lett 33(7):L07304. https://doi.org/10.1029/2005GL02554 Boehm J, Heinkelmann R, Schuh H (2007) Short note: a global model of pressure and temperature for geodetic applications. J Geod 81(10):679–683. https://doi.org/10.1007/s00190-007-0135-3 Brockmann E (1997) Combination of solution for geodetic and geodynamic applications of the Global Positioning System (GPS). PhD thesis, Swiss Geodetic Commission, Zurich. https://www.sgc.ethz.ch/sgc-volumes/sgk-55.pdf Brzeziński A, Bizouard C, Petrov S (2002) Influence of the atmosphere on earth rotation: What new can be learned from the recent atmospheric angular momentum estimates? Surv Geophys 23(1):33–69. https://doi.org/10.1023/A:1014847319391 Brzeziński A, Ponte R, Ali A (2004) Nontidal oceanic excitation of nutation and diurnal/semidiurnal polar motion revisited. J Geophys Res Solid Earth 109:B11407. https://doi.org/10.1029/2004JB003054 Chao B, Ray R, Gipson J, Egbert G, Ma C (1996) Diurnal/semidiurnal polar motion excited by oceanic tidal angular momentum. J Geophys Res 101(B9):20151–20163. https://doi.org/10.1029/96JB01649 Petit G, Luzum B (eds) IERS Conventions (2010) Frankfurt am main: Verlag des Bundesamts für Kartographie und Geodäsie, 179pp. ISBN 3–89888–989–6. https://iers-conventions.obspm.fr/conventions_versions.php Desai S, Sibois A (2016) Evaluating predicted diurnal and semidiurnal tidal variations in polar motion with GPS-based observations. J Geophys Res Solid Earth 121(7):5237–5256. https://doi.org/10.1002/2016JB013125 deViron O, Schwarbaum G, Lott F, Dehant V (2005) Diurnal and subdiurnal effects of the atmosphere on the Earth rotation and geocenter motion. J Geophys Res 110:B11. https://doi.org/10.1029/2005JB003761 Dilssner F, Laufer G, Springer T, Schönemann E, Enderle W (2018) The BeiDou attitude model for continuous yawing MEO and IGSO spacecraft. EGU 2018, Vienna. http://navigation-office.esa.int/attachments_29393052_1_EGU2018_Dilssner_Final.pdf Englich S, Mendes-Cerveira PJ, Weber R, Schuh H (2007) Determination of Earth rotation variations by means of VLBI and GPS and comparison to conventional models. Vermess Geoinf 2:104–112. https://www.erdrotation.de/publication_p08_englich_vgi2007_003.pdf Gipson J (1996) Very long baseline interferometry determination of neglected tidal terms in high-frequency Earth orientation variation. J Geophys Res Solid Earth 101(B12):28051–28064. https://doi.org/10.1029/96JB02292 Gross R, Fukumori I, Menemenlis D (2003) Atmospheric and oceanic excitation of the Earth’s wobbles during 1980–2000. J Geophys Res 108(B8):2370. https://doi.org/10.1029/2002JB002143 Gross R, Beutler G, Plag H (2009) Integrated scientific and societal user requirements and functional specifications for the GGOS. In: Global geodetic observing system. Springer, Berlin. https://doi.org/10.1007/978-3-642-02687-4_7 Hefty J, Rothacher M, Springer T, Weber R, Beutler G (2000) Analysis of the first year of Earth rotation parameters with a sub-daily resolution gained at the CODE processing center of the IGS. J Geod 74(6):479–487. https://doi.org/10.1007/s001900000108 Hekimoglu, S, and Koch, K (1999) How can reliability of robust methods be measured? In: Altan, Gruending (eds) 3rd Turkish-German joint geodetic days. Towards a digital age, vol 1. Istanbul Technical University, Istanbul, pp 179–196 Koch, K (1999) Parameter estimation and hypothesis testing in linear models. Springer, Berlin. https://doi.org/10.1007/978-3-662-03976-2 Kouba J (2008) A simplified yaw-attitude model for eclipsing GPS satellites. GPS Solut 13(1):1–12. https://doi.org/10.1007/s10291-008-0092-1 Liu J, Ge M (2003) PANDA software and its preliminary result of positioning and orbit determination. Wuhan Univ J Nat Sci 8:603–609. https://doi.org/10.1007/BF02899825 Lou Y, Dai X, Gong X, Li C, Qing Y, Liu Y, Peng Y, Gu S (2022) A review of real-time multi-GNSS precise orbit determination based on the filter method. Satell Navig 3(1):15. https://doi.org/10.1186/s43020-022-00075-1 Lutz S, Meindl M, Steigenberger P, Beutler G, Sośnica K, Schaer S, Dach R, Arnold D, Thaller D, Jaggi A (2016) Impact of the arc length on GNSS analysis results. J Geod 90(4):365–378. https://doi.org/10.1007/s00190-015-0878-1 Lyard F, Allain D, Cancet M, Carrère L, Picot N (2021) FES2014 global ocean tide atlas: design and performance. Ocean Sci 17(3):615–649. https://doi.org/10.5194/os-17-615-2021 Mathews P, Bretagnon P (2003) Polar motions equivalent to high frequency nutations for a nonrigid Earth with anelastic mantle. Astron Astrophys 400(3):1113–1128. https://doi.org/10.1051/0004-6361:20021795 Mathews P, Herring T, Buffett B (2002) Modeling of nutation and precession: new nutation series for nonrigid Earth and insights into the Earth's interior. J Geophys Res Solid Earth. https://doi.org/10.1029/2001JB000390 Peng Y, Lou Y, Dai X, Guo J, Shi C (2022) Impact of radiation pressure models on earth rotation parameters derived from BDS. GPS Solut 26(4):126. https://doi.org/10.1007/s10291-022-01316-1 Ray J (2008) Analysis effects in IGS polar motion estimates. http://acc.igs.org/erp-index.html. Accessed 21 Mar 2023 Ray R, Steinberg D, Chao B, Cartwright D (1994) Diurnal and semidiurnal variations in the Earth’s rotation rate induced by oceanic tides. Science 264(5160):830–832. https://doi.org/10.1126/science.264.5160.830 Rebischung P, Schmid R (2016) IGS14/igs14.atx: a new framework for the IGS products. American Geophysical Union Fall Meeting 2016 San Francisco. https://mediatum.ub.tum.de/doc/1341338/file.pdf Rodriguez-Solano C, Hugentobler U, Steigenberger P (2012a) Adjustable box-wing model for solar radiation pressure impacting GPS satellites. Adv Space Res 49(7):1113–1128. https://doi.org/10.1016/j.asr.2012.01.016 Rodriguez-Solano C, Hugentobler U, Steigenberger P, Lutz S (2012b) Impact of Earth radiation pressure on GPS position estimates. J Geod 86(5):309–317. https://doi.org/10.1007/s00190-011-0517-4 Rothacher M, Beutler G, Weber R, Hefty J (2001) High-frequency variations in Earth rotation from Global Positioning System data. J Geophys Res Solid Earth 106(B7):13711–13738. https://doi.org/10.1029/2000JB900393 Saastamoinen J (1972) Contribution to the theory of atmospheric refraction. B Geod 105(1):279–298. https://doi.org/10.1007/BF02521844 Sibois A (2011) GPS-based sub-hourly polar motion estimates: strategies and applications. PhD thesis, University of Colorado, Boulder. https://scholar.colorado.edu/downloads/pk02c9902 Sibois A (2019) Analysis of high-frequency EOP (HFEOP) models and their impact on GPS data processing. IGS ACC Workshop, April 2019, Potsdam. https://s3-ap-southeast-2.amazonaws.com/igs-acc-web/igs-acc-website/workshop2019/Sibois_IgsAcWorkshop_2019.pdf Sibois A, Desai S, Bertiger W, Haines B (2017) Analysis of decadelong time series of GPS-based polar motion estimates at 15-min temporal resolution. J Geod 91(8):965–983. https://doi.org/10.1007/s00190-017-1001-6 Teunissen P (2000) Testing theory an introduction. Delft University Press Delft, 156p. ISBN 978–9040719752 Thaller D, Krügel M, Rothacher M, Tesmer V, Schmid R, Angermann D (2007) Combined Earth orientation parameters based on homogeneous and continuous VLBI and GPS data. J Geod 81(6–8):529–541. https://doi.org/10.1007/s00190-006-0115-z Zajdel R, Sośnica K, Bury G, Dach R, Prange L (2020) System-specific systematic errors in earth rotation parameters derived from GPS, GLONASS, and Galileo. GPS Solut. https://doi.org/10.1007/s10291-020-00989-w Zajdel R, Sośnica K, Bury G, Dach R, Prange L, Kazmierski K (2021) Sub-daily polar motion from GPS, GLONASS, and Galileo. J Geod 95(1):3. https://doi.org/10.1007/s00190-020-01453-w