Phân tích tính chất cấu trúc và cảm biến UV của các dãy nanodrod ZnO được trồng trên cơ sở quay

Journal of Sol-Gel Science and Technology - Tập 85 - Trang 458-469 - 2017
R. Shakernejad1, A. Khayatian1, A. Ramazani1, S. F. Akhtarianfar2,3, M. Almasi Kashi1
1Department of Physics, University of Kashan, Kashan, Iran
2Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, Iran
3Department of Cogno-Mechatronics Engineering, Pusan National University (PNU), Busan, Republic of Korea

Tóm tắt

Nanorod ZnO (ZnO NRs) đã được tổng hợp thành công trên nền chất nền có lớp hạt bằng phương pháp thủy nhiệt quay mới. Ảnh hưởng của tốc độ quay của chất nền đến sự phát triển của ZnO NRs đã được đặc trưng một cách hệ thống bằng phương pháp nhiễu xạ tia X (XRD) và kính hiển vi điện tử quét phát xạ trường (FESEM). Khi tốc độ quay tăng lên, đường kính trung bình của ZnO NRs giảm từ khoảng 43 nm trong các mẫu ZnO NRs trồng trên nền ổn định xuống còn khoảng 27 nm trong mẫu có tốc độ 60 rpm, trong khi mật độ số lượng tăng khoảng một bậc. Các nghiên cứu quang học chỉ ra rằng băng khoảng của ZnO NRs đã dịch chuyển về phía giá trị cao hơn khi tốc độ tăng lên tới 60 rpm và sau đó giảm dần. Biến thiên điện trở của các mẫu được mô tả theo các tính chất cấu trúc của NRs và sự kết dính của chúng, trong đó việc tăng cường các mối nối bên của NRs thông qua quay nền, cải thiện sự chuyển tiếp của electron trong mẫu. Cuối cùng, tính chất cảm biến quang của các thiết bị phát hiện UV dựa trên ZnO đã được nghiên cứu. Kết quả quan sát cho thấy thiết bị phát hiện dựa trên ZnO NRs được trồng ở 120 rpm cho hiệu suất tối ưu với độ nhạy 570 và độ đáp ứng 1.9 A/W.

Từ khóa

#ZnO nanorods #hydrothermal method #substrate rotation #optical properties #photosensing properties

Tài liệu tham khảo

Lyu SC, Zhang Y, Ruh H, Lee H-J, Shim H-W, Suh E-K, Lee CJ (2002) Low temperature growth and photoluminescence of well-aligned zinc oxide nanowires. Chem Phys Lett 363(1):134–138 Jagadish C, Pearton SJ (2011) Zinc oxide bulk, thin films and nanostructures: processing, properties, and applications. Elsevier publication, ISBN 10:0-08-044722-8:443–447 Yang P, Yan H, Mao S, Russo R, Johnson J, Saykally R, Morris N, Pham J, He R, Choi H-J (2002) Controlled growth of ZnO nanowires and their optical properties. Adv Funct Mater12(5):323 Wang ZL, Song J (2006) Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312(5771):242–246 Lu M-P, Song J, Lu M-Y, Chen M-T, Gao Y, Chen L-J, Wang ZL (2009) Piezoelectric nanogenerator using p-type ZnO nanowire arrays. Nano Lett 9(3):1223–1227 Choi MY, Choi D, Jin MJ, Kim I, Kim SH, Choi JY, Lee SY, Kim JM, Kim SW (2009) Mechanically powered transparent flexible charge‐generating nanodevices with piezoelectric ZnO nanorods. Adv Mater 21(21):2185–2189 Nasr B, Wang D, Kruk R, Rösner H, Hahn H, Dasgupta S (2013) High‐speed, low‐voltage, and environmentally stable operation of electrochemically gated zinc oxide nanowire field‐effect transistors. Adv Funct Mater 23(14):1750–1758 McCune M, Zhang W, Deng Y (2012) High efficiency dye-sensitized solar cells based on three-dimensional multilayered ZnO nanowire arrays with “caterpillar-like” structure. Nano Lett 12(7):3656–3662 Yang Q, Liu Y, Pan C, Chen J, Wen X, Wang ZL (2013) Largely enhanced efficiency in ZnO nanowire/p-polymer hybridized inorganic/organic ultraviolet light-emitting diode by piezo-phototronic effect. Nano Lett 13(2):607–613 Niu S, Hu Y, Wen X, Zhou Y, Zhang F, Lin L, Wang S, Wang ZL (2013) Enhanced performance of flexible ZnO nanowire based room‐temperature oxygen sensors by Piezotronic effect. Adv Mater 25(27):3701–3706 Akhtarianfar SF, Khayatian A, Almasi-Kashi M (2016) Large scale ZnO nanorod-based UV sensor induced by optimal seed layer. Ceram Int 42(12):13421–13431 Azimirad R, Khayatian A, Safa S, Kashi MA (2014) Enhancing photoresponsivity of ultra violet photodetectors based on Fe doped ZnO/ZnO shell/core nanorods. J Alloys Compd 615:227–233 Azimirad R, Khayatian A, Kashi MA, Safa S (2014) Electrical investigation and ultraviolet detection of ZnO nanorods encapsulated with ZnO and Fe-doped ZnO layer. J Sol-Gel Sci Technol 71(3):540–548 Roza L, Rahman MYA, Umar A, Salleh MM (2015) Direct growth of oriented ZnO nanotubes by self-selective etching at lower temperature for photo-electrochemical (PEC) solar cell application. J Alloys Compd 618:153–158 Kind H, Yan H, Messer B, Law M, Yang P (2002) Nanowire ultraviolet photodetectors and optical switches. Adv Mater 14(2):158 Pruna A, Pullini D, Busquets D (2015) Effect of AZO film as seeding substrate on the electrodeposition and properties of Al-doped ZnO nanorod arrays. Ceram Int 41(10):14492–14500 Burshtein G, Lumelsky V, Lifshitz Y (2016) The role of reactive gases in ZnO nanowires growth via the carbothermal reaction. J Phys Chem C 120(28):15424–15435 Podrezova L, Porro S, Cauda V, Fontana M, Cicero G (2013) Comparison between ZnO nanowires grown by chemical vapor deposition and hydrothermal synthesis. Appl Phys A 113(3):623–632 Feng T-H, Xia X-C (2016) Growth of arsenic doped ZnO films using a finite surface doping source by metal organic chemical vapor deposition. Opt Mater Express 6(12):3733–3740 Tian F, Zhao Y, Liu Y, Cao H, Zhao J, Lu X (2014) Pb nanoparticle tipped ZnO nanowires heterostructures by long-pulse-width laser ablation of binary metal target in diluted gas. Mater Lett 119:8–11 Baruah S, Dutta J (2016) Hydrothermal growth of ZnO nanostructures. Sci Technol Adv Mater Jing W, Qi H, Shi J, Jiang Z, Zhou F, Cheng Y, Gao K (2015) Effects of the geometries of micro-scale substrates on the surface morphologies of ZnO nanorod-based hierarchical structures. Appl Surf Sci 355:403–410 Chen H-W, Yang H-W, He H-M, Lee Y-M (2015) ZnO nanorod arrays prepared by chemical bath deposition combined with rapid thermal annealing: structural, photoluminescence and field emission characteristics. J Phys D Appl Phys 49(2):025306 Jiaa G, Haob B, Lub X, Wangb X, Lib YYaob J (2013) Solution Growth of Well-Aligned ZnO Nanorods on Sapphire Substrate. detail 4:6 Roy N, Chowdhury A, Paul T, Roy A (2016) Morphological, optical, and Raman characteristics of ZnO nanoflowers on ZnO-seeded Si substrates synthesized by chemical method. J Nanosci Nanotechnol 16(9):9738–9745 Syrrokostas G, Govatsi K, Yannopoulos SN (2016) High-quality, reproducible ZnO nanowire arrays obtained by a multiparameter optimization of chemical bath deposition growth. Cryst Growth Des 16(4):2140–2150 Kuo C-Y, Ko R-M, Tu Y-C, Lin Y-R, Lin T-H, Wang S-J (2012) Tip shaping for ZnO nanorods via hydrothermal growth of ZnO nanostructures in a stirred aqueous solution. Cryst Growth Des 12(8):3849–3855 Kim HM, Youn JR, Song YS (2016) Hydrodynamic fabrication of structurally gradient ZnO nanorods. Nanotechnology 27(8):085704 Du L-X, Jiao Y, Niu S-Y, Miao H, Yao H-B, Wang K-G, Hu X-Y, Fan H-B (2016) Control of morphologies and properties of zinc oxide nanorod arrays by slightly adjusting their seed layers. Nanomater Nanotechnol 6:1847980416663674 Polsongkram D, Chamninok P, Pukird S, Chow L, Lupan O, Chai G, Khallaf H, Park S, Schulte A (2008) Effect of synthesis conditions on the growth of ZnO nanorods via hydrothermal method. Phys B: Condens Matter 403(19):3713–3717 Park WI, Kim DH, Jung S-W, Yi G-C (2002) Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods. Appl Phys Lett 80(22):4232–4234 Ghosh M, Bhattacharyya R, Raychaudhuri A (2008) Growth of compact arrays of optical quality single crystalline ZnO nanorods by low temperature method. Bull Mater Sci 31(3):283–289 Kim S, Nam G, Yim KG, Lee J, Kim Y, Leem J-Y (2013) Effects of post-heated ZnO seed layers on structural and optical properties of ZnO nanostructures grown by hydrothermal method. Electron Mater Lett 9(3):293–298 Shabannia R, Hassan HA (2014) Controllable vertically aligned ZnO nanorods on flexible polyethylene naphthalate (PEN) substrate using chemical bath deposition synthesis. Appl Phys A 114(2):579–584 Katoch A, Sun G-J, Choi S-W, Byun J-H, Kim SS (2013) Competitive influence of grain size and crystallinity on gas sensing performances of ZnO nanofibers. Sens Actuators B: Chem 185:411–416 Salehi A, Rohani A, Manafi S, Tabrizi M, Fardafshari A (2011) Preparation and characterization of nano-ZnO powder via polymer gelation method. Int J Plastics Technol 15(1):43–51 Yuan Z, Yu J, Jiang Y (2011) Growth of diameter-controlled ZnO nanorod arrays by hydrothermal technique for polymer solar cell application. Energy Procedia 12:502–507 Yu J, Yuan Z, Han S, Ma Z (2012) Size-selected growth of transparent well-aligned ZnO nanowire arrays. Nanoscale Res Lett 7(1):1–6 Mohamed R, Rouhi J, Malek MF, Ismail AS, Mahmood AHS (2016) MR sol gel synthesized zinc oxide nanorods on single and co-doped ZnO seed layer templates: morphological, optical and electrical properties. Int J Electrochem Sci 11(3):2197–2204 Ghosh T, Basak D (2010) Highly efficient ultraviolet photodetection in nanocolumnar RF sputtered ZnO films: a comparison between sputtered, sol–gel and aqueous chemically grown nanostructures. Nanotechnology 21(37):375202 Wang L, Kang Y, Wang Y, Zhu B, Zhang S, Huang W, Wang S (2012) CuO nanoparticle decorated ZnO nanorod sensor for low-temperature H2S detection. Mater Sci Eng: C 32(7):2079–2085 Cho M-Y, Kim M-S, Choi H-Y, Yim K-G, Leem J-Y (2011) Post-annealing effects on properties of ZnO nanorods grown on Au seed layers. Bull Korean Chem Soc 32(3):880–884 Kurda AH, Hassan YM, Ahmed NM (2015) Controlling diameter, length and characterization of ZnO nanorods by simple hydrothermal method for solar cells. World J Nano Sci Eng 5(01):34 Shabannia R, Hassan HA (2013) Growth and characterization of vertically aligned ZnO nanorods grown on porous silicon: effect of precursor concentration. Superlattices Microstruct 62:242–250 Resmini A, Tredici I, Cantalini C, Giancaterini L, De Angelis F, Rondanina E, Patrini M, Bajoni D, Anselmi-Tamburini U (2015) A simple all-solution approach to the synthesis of large ZnO nanorod networks. J Mater Chem A 3(8):4568–4577 Srivastava AK, Kumar J (2016) Effect of zinc addition and vacuum annealing time on the properties of spin-coated low-cost transparent conducting 1 at% Ga–ZnO thin films. Sci Technol Adv Mater 14(6):065002 Qian R-Y, Botsaris GD (1997) A new mechanism for nuclei formation in suspension crystallizers: the role of interparticle forces. Chem Eng Sci 52(20):3429–3440 Ridhuan NS, Razak KA, Lockman Z, Aziz AA (2012) Structural and morphology of ZnO nanorods synthesized using ZnO seeded growth hydrothermal method and its properties as UV sensing. PLoS ONE 7(11):e50405 Khayatian A, Kashi MA, Azimirad R, Safa S (2014) Enhanced gas-sensing properties of ZnO nanorods encapsulated in an Fe-doped ZnO shell. J Phys D Appl Phys 47(7):075003 Boruah BD, Ferry DB, Mukherjee A, Misra A (2015) Few-layer graphene/ZnO nanowires based high performance UV photodetector. Nanotechnology 26(23):235703 Kim KH, Park KC, Ma DY (1997) Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by radio frequency magnetron sputtering. J Appl Phys 81(12):7764–7772 Zhu L, Gu X, Qu F, Zhang J, Feng C, Zhou J, Ruan S, Kang B (2013) Electrospun ZnO nanofibers‐based ultraviolet detector with high responsivity. J Am Ceram Soc 96(10):3183–3187 Soci C, Zhang A, Xiang B, Dayeh SA, Aplin D, Park J, Bao X, Lo Y-H, Wang D (2007) ZnO nanowire UV photodetectors with high internal gain. Nano Lett 7(4):1003–1009 Mehrabian M, Azimirad R, Mirabbaszadeh K, Afarideh H, Davoudian M (2011) UV detecting properties of hydrothermal synthesized ZnO nanorods. Phys E: Low Dimens Syst Nanostruct 43(6):1141–1145 Panda S, Jacob C (2012) Preparation of transparent ZnO thin films and their application in UV sensor devices. Solid-State Electron 73:44–50 Guo L, Zhang H, Zhao D, Li B, Zhang Z, Jiang M, Shen D (2012) High responsivity ZnO nanowires based UV detector fabricated by the dielectrophoresis method. Sensors Actuators B: Chem 166:12–16 Guo F, Yang B, Yuan Y, Xiao Z, Dong Q, Bi Y, Huang J (2012) A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection. Nat Nanotechnol 7(12):798–802 Khayatian A, Asgari V, Ramazani A, Akhtarianfar S, Kashi MA, Safa S (2017) Diameter-controlled synthesis of ZnO nanorods on Fe-doped ZnO seed layer and enhanced photodetection performance. Mater Res Bull 94:77–84 Akhtarianfar SF, Khayatian A, Shakernejad R, Almasi-Kashi M, Hong SW (2017) Improved sensitivity of UV sensors in hierarchically structured arrays of network-loaded ZnO nanorods via optimization techniques. RSC Adv 7(51):32316–32326 Liu K, Ma J, Zhang J, Lu Y, Jiang D, Li B, Zhao D, Zhang Z, Yao B, Shen D (2007) Ultraviolet photoconductive detector with high visible rejection and fast photoresponse based on ZnO thin film. Solid-State Electron 51(5):757–761 Lu C-Y, Chang S-P, Chang S-J, Hsueh T-J, Hsu C-L, Chiou Y-Z, Chen I-C (2009) A lateral ZnO nanowire UV photodetector prepared on a ZnO: Ga/glass template. Semicond Sci Technol 24(7):075005 Suehiro J, Nakagawa N, Hidaka S-i, Ueda M, Imasaka K, Higashihata M, Okada T, Hara M (2006) Dielectrophoretic fabrication and characterization of a ZnO nanowire-based UV photosensor. Nanotechnology 17(10):2567