Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Phân tích các mô hình không gian-thời gian của sự biến đổi mực nước ngầm như một công cụ để quản lý tài nguyên nước kết hợp ở vùng đồng bằng trung tâm phía Bắc của lưu vực sông Chao Phraya, Thái Lan
Tóm tắt
Chiến lược bền vững cho quản lý nước kết hợp phải bao gồm thông tin về sự sẵn có theo thời gian và không gian của nguồn tài nguyên tự nhiên này. Do tình trạng thiếu nước trong mùa khô, nông dân ở vùng đồng bằng phía Bắc của lưu vực sông Chao Phraya, Thái Lan, ngày càng sử dụng nước ngầm để đáp ứng nhu cầu tưới tiêu. Để đánh giá khả năng quản lý nước kết hợp trong khu vực, các biến đổi không gian-thời gian của mực nước ngầm ở tầng chứa nước Younger Terrace đã được khảo sát. Đầu tiên, một bản đồ địa hình khu vực dựa trên khảo sát thực địa, viễn thám và các nghiên cứu môi trường trước đó đã được xây dựng. Sau đó, dữ liệu từ các giếng đã được phân tích liên quan đến lượng mưa, dòng chảy, sản lượng và bơm, và dữ liệu đã được nội suy bằng các kỹ thuật địa thống kê. Các kết quả được phân tích thông qua phân vùng tích hợp dựa trên lý thuyết màu sắc áp dụng vào trực quan hóa đa biến. Các kết quả phân tích chỉ ra những khu vực phù hợp hơn cho việc khai thác nước ngầm trong khung quản lý kết hợp liên quan đến các quá trình thủy động lực học tự nhiên và tác động của con người. Các kết quả kriging được so sánh với bản đồ địa hình, và các khu vực địa hình thể hiện các mô hình thủy động lực học đặc trưng. Các dải tây thể hiện tiềm năng tốt nhất cho việc mở rộng sử dụng kết hợp, trong khi các ranh giới của các dải phía bắc thể hiện tiềm năng thấp nhất.
Từ khóa
Tài liệu tham khảo
Ahmadi SH, Seghamiz A (2008) Application and evaluation of kriging and cokriging methods on groundwater depth mapping. Environ Monit Assess 138:357–368
Arlai P (2007) Numerical modeling of possible saltwater intrusion mechanisms in the multiple- layer coastal aquifer system of the Gulf of Thailand, Dr. Ing. Dissertation, School of Civil Engineering, University of Kassel, Germany
Balleau WP, Mayer AB (1988) The transition from groundwater mining to induced recharge in generalized hydrogeologic systems. In: Proceedings of FOCUS conference on Southwestern Ground Water Issues, National Water Well Association, Dublin, Ohio, pp 81–103
Bejranonda W, Koontanakulvong S, Koch M et al (2007) Groundwater modeling for conjunctive use patterns investigation in the upper Central Plain of Thailand, International Association of Hydrogeologists selected papers, Aquifer Systems Management: Darcy’s Legacy in a World of Impending Water Shortage. Taylor & Francis Group, London
Bejranonda W, Koontanakulvong S, Suthidhummajit C (2008) Study of the Interaction between Streamflow and Groundwater toward the Conjunctive use Management: a Case Study in an Irrigation Project. 1st NPRU Academic Conference, Oct. Annals. p 59–67
Bejranonda W, Koch M, Koontanakulvong S (2013) Surface water and groundwater dynamic interaction models as guiding tools for optimal conjunctive water use policies in the central plain of Thailand. Environ Earth Sci 70(5):2079–2086
Bishop CM (1995) Neural networks for pattern recognition. Oxford university press, Oxford, p 482
Bock M, Köthe R (2008) Predicting the Depth of hydromorphic Soil Characteristics influenced by Ground Water. In: Böhner J, Blaschke T, Montanarella L (eds.) SAGA—seconds out. Hamburger Beiträge zur Physischen Geographie und Landschaftsökologie, 113p. 19:13–22
Borland D, Taylor RM (2007) Rainbow color map (still) considered harmful. Comput Graph Appl 27(2):14–17
Bredehoeft J, Kendy E (2008) Strategies for offsetting seasonal impacts of pumping on a nearby stream. Groundwater 46(1):23–29
Brown R (2005) Outgrowing the Earth: The Food Security Challenge in an age of falling water tables and rising temperatures. Earth Policy Institute. Norton & Co, New York
Chen Y, Chen J, Xevi E et al (2010) GIS-based spatial hydrological zoning for sustainable water management of irrigation areas. In: International Congress on Environmental Modelling and Software. Modelling for Environment’s Sake, Fifth Biennial Meeting, Ottawa, Canada, International Environmental Modelling and Software Society (iEMSs)
CIA—Central Intelligence Agency, USA (1974) Vegetation Map of Thailand. http://www.mapcruzin.com/free-maps-thailand/thailand_1974_vegetation.jpg. Cited 13 Dec 2013
Craig N, Aldenderfer M, Moyes H (2006) Multivariate visualization and analysis of photomapped artifact scatters. J Archaeol Sci 33:1617–1627
Cressie N (1990) The origins of kriging. Math Geol 22(3):239–252
Cressie NAC (1993) Statistics for spatial data, rev edn. Wiley, New York
Dempster A, Laird N, Rubin D (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B 39(1):1–38
Desbarats AJ, Logan CE, Hinton MJ et al (2002) On the kriging of water table elevations using collateral information from a digital elevation model. J Hydrol 255:25–38
Firat M, Dikbas F, Koc AC et al (2010) Missing data analysis and homogeneity test for Turkish precipitation series. Sādhanā Indian Acad Sci 35(6):707–720
Foster S, Van Steenbergen F, Zuleta J et al (2010) Conjunctive use of groundwater and surface water: from Spontaneous Coping Strategy to Adaptive Resource Management. Sustainable Groundwater Management Contributions to Policy Promotion. World Bank. Global Water Partnership. Strategic Overview Series, (2). http://www.un-igrac.org/dynamics/modules/SFIL0100/view.php?fil_Id=202. Cited 14 Sep 2014
GISTDA (2013) Thailand flood monitoring system. http://flood.gistda.or.th/. Cited 13 Jan 2014
Hargrove WW, Hoffman FM (2004) The potential of multivariate quantitative methods for delineation and visualization of ecoregions. Environ Manag 34(5):S39–S60
Hartley H (1958) Maximum likelihood estimation from incomplete data. Biometrics 14:174–194
Haruyama S (1993) Geomorphology of the central plain of Thailand and its relationship with recent flood conditions. Geo J 31(4):327–334
Haruyama S, Ohokura H, Simking T et al (1996) Geomorphological zoning for flood inundation using satellite data. Geo J 138(3):273–278
Healy R, Cook P (2002) Using groundwater levels to estimate recharge. Hydrogeol J 10:91–109
Houzer TL, Johnson AI (1985) Land subsidence caused by ground water withdrawal in urban areas. Geo J 11(3):245–255
Hungspreug S, Khao-uppatum W, Thanopanuwat S (2000) Flood management in Chao Phraya river basin. The Chao Phraya Delta: Historical Development, Dynamics and Challenges of Thailand’s Rice Bowl: Proceedings of the International Conference, 12–15 Dec 2000, Kasetsart University, Bangkok
Jain AK, Muralikrishna Rao BM, Rama Mohan Rao MS et al (2009) Groundwater Scenario in Andhra Pradesh. WASHCost - CESS Working Paper No.3, Hyderabad, India. p 29. http://www.washcost.info/page/1641. Cited 14 Dec 2013
Jarvis A, Reuter HI, Nelson A et al (2008) Hole-filled SRTM for the globe Version 4. CGIAR-SXI SRTM 90 m database. http://srtm.csi.cgiar.org. Cited 31 Mar 2013
Komori D, Nakamura S, Kiguchi M et al (2012) Characteristics of the 2011 Chao Phraya River flood in Central Thailand. Hydrol Res Lett 6:41–46
Koontanakulvong S (coord) (2006) The study of Conjunctive use of Groundwater and Surface Water in Northern Chao Phraya Basin Final Report. Department of Groundwater Resources. Chulalongkorn University
Koontanakulvong S, Chaowiwat W, Mizayato T (2013) Climate change’s impact on irrigation system and farmers’ response: a case study of the Plaichumpol Irrigation Project, Phitsanulok Province, Thailand. Paddy and Water Environ. doi: 10.1007/s10333-013-0389-8
Land Development Department (2009a) Thailand Land Use Map of 2009. Thailand Government
Land Development Department (2009b) Thailand Soil Map. Thailand Government
Merwing DH, Wickens CD (1993) Comparison of eight color and gray scales for displaying continuous 2D data. Proc Hum Factors Ergon Soc Ann Meet 37(19):1330–1334
Meteorological Department of Thailand (2013) The Climate of Thailand. p 7. http://www.tmd.go.th/en/archive/thailand_climate.pdf. Cited 14 Dec 2013
Molle F (2002) The Closure of the Chao Phraya River Basin in Thailand: Its Causes, Consequences and Policy Implications. Asian Irrigation in Transition–Responding to the Challenges Ahead. 22–23 Apr, Workshop, Asian Institute of Technology, Bangkok, Thailand, p 16
Molle F (2007) Scales and power in river basin management: the Chao Phraya River in Thailand. Geogr J 173(4):358–373
Moslemzadeh M, Salarizazi M, Soleymani S (2011) Application and assessment of kriging and cokriging methods on groundwater level estimation. J Am Sci 7(7):34–39
Murai S (ed) (1996) Remote sensing note. Japan Association on Remote Sensing, 2nd edn. Nihon, Tokyo
Murata G, Matsumoto E (1974) Natural vegetation and physiography of the Central Plain of Thailand. Southeast Asian Stud 12(3):280–290
Nikroo L, Zare MK, Sepaskhak AR et al (2010) Groundwater depth and elevation interpolation by kriging methods in Mohr Basin of Fars province in Iran. Environ Monit Assess 166:387–407
Peterson TJ, Chengb X, Westerna AW et al (2011) Novel indicator geostatistics for water table mapping that incorporate elevation, land use, stream network and physical constraints to provide probabilistic estimation of heads and fluxes. In: 19th International Congress on Modelling and Simulation, Perth, Australia, 12–16 Dec
Prajamwong S, Suppataratarn P (2009) Flood Mitigation Management in Urban Areas. Bangkok, Thailand: Royal Irrigation Department. Expert Group Meeting on Innovative strategies towards flood resilient cities in Asia-Pacific 2009. http://www.unescap.org/idd/events/2009_EGM-DRR/index.asp. Cited 13 Jan 2014
Presti RL, Barca E, Passarella G (2010) A methodology for treating missing data applied do daily rainfall data in the Candelaro River Basin (Italy). Environ Monit Assess 160:1–22
Promma K, Zheng C, Asnachinda P (2007) Groundwater and surface-water interactions in a confined alluvial aquifer between two rivers: effects of groundwater flow dynamics on high iron anomaly. Hydrogeol J 15:495–513
Reimer A (2011) Squaring the Circle: bivariate color maps and Jacques Bertin’s concept of disassociation. In: Proceedings of the 25th International Cartography Conference. CO-054. p 10
Riley SJ, DeGloria SD, Elliot R (1999) A terrain ruggedness index that quantifies topographic heterogeneity. Intermountain J Sci 5(1–4):23–27
Rogowitz BE, Treinish LA (1996) How not to lie with visualization. Comput Phys 10(3):268–273
Royal Irrigation Department (1979) Chao Praya-Mekong Basin Study—Phase 1. Ministry of Agriculture and Cooperatives, Thailand. Main Report, p 147
Rungdilokroajn V (1992) Natural disasters in Thailand. In: Seminar in Technology for Disaster Prevention, 16. Japan. National Research Institute for Earth Science and Disaster Prevention Science and Technology Agency. pp 141–52
Sophocleous M (2000) From safe yield to sustainable development of water resources: the Kansas experience. J Hydrol 235:27–43
Sophocleous M (2012) The evolution of groundwater management paradigms in Kansas and possible new steps towards water sustainability. J Hydrol 414:550–559
Suthidhummajit C, Kootanakulvong S (2011) Climate Change Impact on Groundwater and Farmer’s Response. The Wang Bua Irrigation Project, Kampheng Phet Province, Thailand: Case Study. Society for Soc Manag Syst Internet J, p 11
Takaya Y (1971) Physiography of rice land in the Chao Phraya Basin of Thailand. Southeast Asian Stud 9(3):375–397
Trumbo BE (1981) A theory for coloring bivariate statistical maps. Am Stat 35(4):220–226
UNITAR (2011) Time Series Analysis of Thailand Flooding 2011. UNOSAT. United Nations. http://www.unitar.org/unosat/node/44/1615. Cited 13 Jan 2014
Uppasit S, Natthawiroj S, Fuangswasdi A et al (2012) Managed Aquifer Recharge Using Infiltration Pond: case study of Ban Nong Na, Phitsanulok, Thailand. IAH 2012 Congress, Annals, Niagara Falls, USA. p 7
Ware C (1988) Color Sequences for univariate maps: theory, experiments and principles. Comput Graph Appl 8(5):41–48
Yumuang S. (coord) (2012) Map of flooded areas in the period of 2006-2011 in the central plain of the Chao-Phraya Basin. Geo-Informatics Center of Thailand—GISTHAI. http://www.gisthai.org/pics/flood_analyse55/flood%202549-2554.jpg. Cited 13 Jan 2014