Analysis of recombination processes in polytype gallium arsenide nanowires
Tài liệu tham khảo
Garnett, 2011, Nanowire solar cells, Annu. Rev. Mater. Res., 41, 269, 10.1146/annurev-matsci-062910-100434
LaPierre, 2013, III-V nanowire photovoltaics: review of design for high efficiency, Phys. Status Solidi RRL, 7, 815, 10.1002/pssr.201307109
Krogstrup, 2013, Single-nanowire solar cells beyond the Shockley-Queisser limit, Nat. Photonics, 7, 306, 10.1038/nphoton.2013.32
Goodnick, 2018, Nanotechnology pathways to next-generation photovoltaics, 1
Standing, 2015, Efficient water reduction with gallium phosphide nanowires, Nat. Commun., 6, 7824, 10.1038/ncomms8824
Wu, 2014, Wafer-scale fabrication of self-catalyzed 1.7 eV GaAsP core-shell nanowire photocathode on silicon substrates, Nano Lett., 14, 2013, 10.1021/nl500170m
Hu, 2013, Optical, electrical, and solar energy-conversion properties of gallium arsenide nanowire-array photoanodes, Energy Environ. Sci., 6, 1879, 10.1039/c3ee40243f
Cao, 2009, Engineering light absorption in semiconductor nanowire devices, Nat. Mater., 8, 643, 10.1038/nmat2477
Fountaine, 2014, Near-unity broadband absorption designs for semiconducting nanowire arrays via localized radial mode excitation, Opt. Express, 22, A930, 10.1364/OE.22.00A930
Heiss, 2013, III–V nanowire arrays: growth and light interaction, Nanotechnology, 25, 014015, 10.1088/0957-4484/25/1/014015
Kayes, 2005, Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells, J. Appl. Phys., 97, 10.1063/1.1901835
Kelzenberg, 2010, Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications, Nat. Mater., 9, 239, 10.1038/nmat2635
C. Colombo, M. Heiss, M. Grätzel, A. Fontcuberta i Morral, Gallium arsenide p-i-n radial structures for photovoltaic applications, Appl. Phys. Lett., vol. 94(17). 〈http://dx.doi.org/10.1063/1.3125435〉.
Chuang, 2010, GaAs-based nanoneedle light emitting diode and avalanche photodiode monolithically integrated on a silicon substrate, Nano Lett., 11, 385, 10.1021/nl102988w
Nozik, 2005, Exciton multiplication and relaxation dynamics in quantum dots: applications to ultrahigh-efficiency solar photon conversion, Inorg. Chem., 44, 6893, 10.1021/ic0508425
Semonin, 2011, Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell, Science, 334, 1530, 10.1126/science.1209845
Hathwar, 2015, Energy relaxation and non-linear transport in InAs nanowires, J. Phys.: Conf. Ser., 647, 012029
Ross, 1982, Efficiency of hot-carrier solar energy converters, J. Appl. Phys., 53, 3813, 10.1063/1.331124
Pelouch, 1992, Comparison of hot-carrier relaxation in quantum wells and bulk GaAs at high carrier densities, Phys. Rev. B, 45, 1450, 10.1103/PhysRevB.45.1450
Goodnick, 1992, Hot carrier relaxation in quasi-2D systems, 191
Luque, 1997, Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels, Phys. Rev. Lett., 78, 5014, 10.1103/PhysRevLett.78.5014
Shockley, 1961, Detailed balance limit of efficiency of p-n junction solar cells, J. Appl. Phys., 32, 510, 10.1063/1.1736034
Green, 2001, Third generation photovoltaics: ultra-high conversion efficiency at low cost, Prog. Photovolt. Res. Appl., 9, 123, 10.1002/pip.360
Åberg, 2016, A GaAs nanowire array solar cell with 15.3% efficiency at 1 sun, IEEE J. Photovolt., 6, 185, 10.1109/JPHOTOV.2015.2484967
van Dam, 2016, High-efficiency nanowire solar cells with omnidirectionally enhanced absorption due to self-aligned indium-tin-oxide Mie scatterers, ACS Nano, 10, 11414, 10.1021/acsnano.6b06874
Green, 2017, Solar cell efficiency tables (version 49), Prog. Photovolt. Res. Appl., 25, 3, 10.1002/pip.2855
Mikulik, 2017, Conductive-probe atomic force microscopy as a characterization tool for nanowire-based solar cells, Nano Energy, 41, 566, 10.1016/j.nanoen.2017.10.016
Krogstrup, 2010, Structural phase control in self-catalyzed growth of GaAs nanowires on silicon (111), Nano Lett., 10, 4475, 10.1021/nl102308k
Jacobsson, 2016, Interface dynamics and crystal phase switching in GaAs nanowires, Nature, 531, 317, 10.1038/nature17148
Murayama, 1994, Chemical trend of band offsets at wurtzite/zinc-blende heterocrystalline semiconductor interfaces, Phys. Rev. B, 49, 4710, 10.1103/PhysRevB.49.4710
De, 2010, Predicted band structures of III–V semiconductors in the wurtzite phase, Phys. Rev. B, 81, 155210, 10.1103/PhysRevB.81.155210
Birman, 1959, Simplified LCAO method for zincblende, wurtzite, and mixed crystal structures, Phys. Rev., 115, 1493, 10.1103/PhysRev.115.1493
Spirkoska, 2009, Structural and optical properties of high quality zinc-blende/wurtzite GaAs nanowire heterostructures, Phys. Rev. B, 80, 245325, 10.1103/PhysRevB.80.245325
P. Corfdir, B. Van Hattem, E. Uccelli, A. Fontcuberta i Morral, R.T. Phillips, Charge carrier generation, relaxation, and recombination in polytypic GaAs nanowires studied by photoluminescence excitation spectroscopy, Appl. Phys. Lett., vol. 103 (13). 〈http://dx.doi.org/10.1063/1.4822345〉.
Graham, 2013, Exciton localization mechanisms in wurtzite/zinc-blende GaAs nanowires, Phys. Rev. B, 87, 125304, 10.1103/PhysRevB.87.125304
Vainorius, 2015, Confinement in thickness-controlled GaAs polytype nanodots, Nano Lett., 15, 2652, 10.1021/acs.nanolett.5b00253
Loitsch, 2016, Microscopic nature of crystal phase quantum dots in ultrathin GaAs nanowires by nanoscale luminescence characterization, New J. Phys., 18, 063009, 10.1088/1367-2630/18/6/063009
Heiss, 2011, Direct correlation of crystal structure and optical properties in wurtzite/zinc-blende GaAs nanowire heterostructures, Phys. Rev. B, 83, 045303, 10.1103/PhysRevB.83.045303
Akopian, 2010, Crystal phase quantum dots, Nano Lett., 10, 1198, 10.1021/nl903534n
Demichel, 2010, Impact of surfaces on the optical properties of GaAs nanowires, Appl. Phys. Lett., 97, 201907, 10.1063/1.3519980
Varshni, 1967, Temperature dependence of the energy gap in semiconductors, Physica, 34, 149, 10.1016/0031-8914(67)90062-6
Corfdir, 2016, Exciton dynamics in GaAs/(Al, Ga) As core-shell nanowires with shell quantum dots, Phys. Rev. B, 94, 155413, 10.1103/PhysRevB.94.155413
C. Hauswald, P. Corfdir, J. Zettler, V. Kaganer, K. Sabelfeld, S. Fernandez-Garrido, T. Flissikowski, V. Consonni, T. Gotschke, H. Grahn, L. Geelhaar and O. Brandt, Origin of the nonradiative decay of bound excitons in GaN nanowires, Phys. Rev. B, vol. 90(16). 〈http://dx.doi.org/10.1103/physrevb.90.165304〉.
Li, 2005, A model for steady-state luminescence of localized-state ensemble, EPL (Europhys. Lett.), 71, 994, 10.1209/epl/i2005-10170-7
