Analysis of recombination processes in polytype gallium arsenide nanowires

Nano Energy - Tập 56 - Trang 196-206 - 2019
Natasa Vulic1, Stephen M. Goodnick1
1School of Electrical, Computer, and Energy Engineering, Tempe, AZ 85287, USA

Tài liệu tham khảo

Garnett, 2011, Nanowire solar cells, Annu. Rev. Mater. Res., 41, 269, 10.1146/annurev-matsci-062910-100434 LaPierre, 2013, III-V nanowire photovoltaics: review of design for high efficiency, Phys. Status Solidi RRL, 7, 815, 10.1002/pssr.201307109 Krogstrup, 2013, Single-nanowire solar cells beyond the Shockley-Queisser limit, Nat. Photonics, 7, 306, 10.1038/nphoton.2013.32 Goodnick, 2018, Nanotechnology pathways to next-generation photovoltaics, 1 Standing, 2015, Efficient water reduction with gallium phosphide nanowires, Nat. Commun., 6, 7824, 10.1038/ncomms8824 Wu, 2014, Wafer-scale fabrication of self-catalyzed 1.7 eV GaAsP core-shell nanowire photocathode on silicon substrates, Nano Lett., 14, 2013, 10.1021/nl500170m Hu, 2013, Optical, electrical, and solar energy-conversion properties of gallium arsenide nanowire-array photoanodes, Energy Environ. Sci., 6, 1879, 10.1039/c3ee40243f Cao, 2009, Engineering light absorption in semiconductor nanowire devices, Nat. Mater., 8, 643, 10.1038/nmat2477 Fountaine, 2014, Near-unity broadband absorption designs for semiconducting nanowire arrays via localized radial mode excitation, Opt. Express, 22, A930, 10.1364/OE.22.00A930 Heiss, 2013, III–V nanowire arrays: growth and light interaction, Nanotechnology, 25, 014015, 10.1088/0957-4484/25/1/014015 Kayes, 2005, Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells, J. Appl. Phys., 97, 10.1063/1.1901835 Kelzenberg, 2010, Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications, Nat. Mater., 9, 239, 10.1038/nmat2635 C. Colombo, M. Heiss, M. Grätzel, A. Fontcuberta i Morral, Gallium arsenide p-i-n radial structures for photovoltaic applications, Appl. Phys. Lett., vol. 94(17). 〈http://dx.doi.org/10.1063/1.3125435〉. Chuang, 2010, GaAs-based nanoneedle light emitting diode and avalanche photodiode monolithically integrated on a silicon substrate, Nano Lett., 11, 385, 10.1021/nl102988w Nozik, 2005, Exciton multiplication and relaxation dynamics in quantum dots: applications to ultrahigh-efficiency solar photon conversion, Inorg. Chem., 44, 6893, 10.1021/ic0508425 Semonin, 2011, Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell, Science, 334, 1530, 10.1126/science.1209845 Hathwar, 2015, Energy relaxation and non-linear transport in InAs nanowires, J. Phys.: Conf. Ser., 647, 012029 Ross, 1982, Efficiency of hot-carrier solar energy converters, J. Appl. Phys., 53, 3813, 10.1063/1.331124 Pelouch, 1992, Comparison of hot-carrier relaxation in quantum wells and bulk GaAs at high carrier densities, Phys. Rev. B, 45, 1450, 10.1103/PhysRevB.45.1450 Goodnick, 1992, Hot carrier relaxation in quasi-2D systems, 191 Luque, 1997, Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels, Phys. Rev. Lett., 78, 5014, 10.1103/PhysRevLett.78.5014 Shockley, 1961, Detailed balance limit of efficiency of p-n junction solar cells, J. Appl. Phys., 32, 510, 10.1063/1.1736034 Green, 2001, Third generation photovoltaics: ultra-high conversion efficiency at low cost, Prog. Photovolt. Res. Appl., 9, 123, 10.1002/pip.360 Åberg, 2016, A GaAs nanowire array solar cell with 15.3% efficiency at 1 sun, IEEE J. Photovolt., 6, 185, 10.1109/JPHOTOV.2015.2484967 van Dam, 2016, High-efficiency nanowire solar cells with omnidirectionally enhanced absorption due to self-aligned indium-tin-oxide Mie scatterers, ACS Nano, 10, 11414, 10.1021/acsnano.6b06874 Green, 2017, Solar cell efficiency tables (version 49), Prog. Photovolt. Res. Appl., 25, 3, 10.1002/pip.2855 Mikulik, 2017, Conductive-probe atomic force microscopy as a characterization tool for nanowire-based solar cells, Nano Energy, 41, 566, 10.1016/j.nanoen.2017.10.016 Krogstrup, 2010, Structural phase control in self-catalyzed growth of GaAs nanowires on silicon (111), Nano Lett., 10, 4475, 10.1021/nl102308k Jacobsson, 2016, Interface dynamics and crystal phase switching in GaAs nanowires, Nature, 531, 317, 10.1038/nature17148 Murayama, 1994, Chemical trend of band offsets at wurtzite/zinc-blende heterocrystalline semiconductor interfaces, Phys. Rev. B, 49, 4710, 10.1103/PhysRevB.49.4710 De, 2010, Predicted band structures of III–V semiconductors in the wurtzite phase, Phys. Rev. B, 81, 155210, 10.1103/PhysRevB.81.155210 Birman, 1959, Simplified LCAO method for zincblende, wurtzite, and mixed crystal structures, Phys. Rev., 115, 1493, 10.1103/PhysRev.115.1493 Spirkoska, 2009, Structural and optical properties of high quality zinc-blende/wurtzite GaAs nanowire heterostructures, Phys. Rev. B, 80, 245325, 10.1103/PhysRevB.80.245325 P. Corfdir, B. Van Hattem, E. Uccelli, A. Fontcuberta i Morral, R.T. Phillips, Charge carrier generation, relaxation, and recombination in polytypic GaAs nanowires studied by photoluminescence excitation spectroscopy, Appl. Phys. Lett., vol. 103 (13). 〈http://dx.doi.org/10.1063/1.4822345〉. Graham, 2013, Exciton localization mechanisms in wurtzite/zinc-blende GaAs nanowires, Phys. Rev. B, 87, 125304, 10.1103/PhysRevB.87.125304 Vainorius, 2015, Confinement in thickness-controlled GaAs polytype nanodots, Nano Lett., 15, 2652, 10.1021/acs.nanolett.5b00253 Loitsch, 2016, Microscopic nature of crystal phase quantum dots in ultrathin GaAs nanowires by nanoscale luminescence characterization, New J. Phys., 18, 063009, 10.1088/1367-2630/18/6/063009 Heiss, 2011, Direct correlation of crystal structure and optical properties in wurtzite/zinc-blende GaAs nanowire heterostructures, Phys. Rev. B, 83, 045303, 10.1103/PhysRevB.83.045303 Akopian, 2010, Crystal phase quantum dots, Nano Lett., 10, 1198, 10.1021/nl903534n Demichel, 2010, Impact of surfaces on the optical properties of GaAs nanowires, Appl. Phys. Lett., 97, 201907, 10.1063/1.3519980 Varshni, 1967, Temperature dependence of the energy gap in semiconductors, Physica, 34, 149, 10.1016/0031-8914(67)90062-6 Corfdir, 2016, Exciton dynamics in GaAs/(Al, Ga) As core-shell nanowires with shell quantum dots, Phys. Rev. B, 94, 155413, 10.1103/PhysRevB.94.155413 C. Hauswald, P. Corfdir, J. Zettler, V. Kaganer, K. Sabelfeld, S. Fernandez-Garrido, T. Flissikowski, V. Consonni, T. Gotschke, H. Grahn, L. Geelhaar and O. Brandt, Origin of the nonradiative decay of bound excitons in GaN nanowires, Phys. Rev. B, vol. 90(16). 〈http://dx.doi.org/10.1103/physrevb.90.165304〉. Li, 2005, A model for steady-state luminescence of localized-state ensemble, EPL (Europhys. Lett.), 71, 994, 10.1209/epl/i2005-10170-7