Analysis of receptor-ligand binding by photoaffinity cross-linking
Tóm tắt
Từ khóa
Tài liệu tham khảo
Eberle AN, de Graan PNE. General principles for photoaffinity labeling of peptide hormone receptors. Trend Biochem Sci, 1980, 5: 320–322
Bayley H. Photogenerated Reagents in Biochemistry and Molecular Biology. New York: Elsevier, 1983
Shoelson SE, Lee J, Lynch CS, Backer JM, Pilch PF. BpaB25 insulins. Photoactivatable analogues that quantitatively cross-link, radiolabel, and activate the insulin receptor. J Biol Chem, 1993, 268: 4085–4091
Kurose T, Pashmforoush M, Yoshimasa Y, Carroll R, Schwartz GP, Burke GT, Katsoyannis PG, Steiner DF. Cross-linking of a B25 azidophenylalanine insulin derivative to the carboxyl-terminal region of the alpha-subunit of the insulin receptor. Identification of a new insulinbinding domain in the insulin receptor. J Biol Chem, 1994, 269: 29190–29197
Xu B, Hu SQ, Chu YC, Huang K, Nakagawa SH, Whittaker J, Katsoyannis PG, Weiss MA. Diabetes-associated mutations in insulin: Consecutive residues in the B chain contact distinct domains of the insulin receptor. Biochemistry, 2004, 43: 8356–8372
Xu B, Hu SQ, Chu YC, Wang S, Wang RY, Nakagawa SH, Katsoyannis PG, Weiss MA. Diabetes-associated mutations in insulin identify invariant receptor contacts. Diabetes, 2004, 53: 1599–1602
Huang K, Xu B, Hu SQ, Chu YC, Hua QX, Qu Y, Li B, Wang S, Wang RY, Nakagawa SH, Theede AM, Whittaker J, De Meyts P, Katsoyannis PG, Weiss MA. How insulin binds: The B-chain alphahelix contacts the L1 beta-helix of the insulin receptor. J Mol Biol, 2004, 341: 529–550
Wan Z, Xu B, Huang K, Chu YC, Li B, Nakagawa SH, Qu Y, Hu SQ, Katsoyannis PG, Weiss MA. Enhancing the activity of insulin at the receptor interface: Crystal structure and photo-cross-linking of A8 analogues. Biochemistry, 2004, 43: 16119–16133
Wan ZL, Huang K, Xu B, Hu SQ, Wang S, Chu YC, Katsoyannis PG, Weiss MA. Diabetes-associated mutations in human insulin: Crystal structure and photo-cross-linking studies of α-chain variant insulin Wakayama. Biochemistry, 2005, 44: 5000–5016
Huang K, Chan SJ, Hua QX, Chu YC, Wang RY, Klaproth B, Jia W, Whittaker J, De Meyts P, Nakagawa SH, Steiner DF, Katsoyannis PG, Weiss MA. The A-chain of insulin contacts the insert domain of the insulin receptor. Photo-cross-linking and mutagenesis of a diabetesrelated crevice. J Biol Chem, 2007, 282: 35337–35349
Hua QX, Xu B, Huang K, Hu SQ, Nakagawa S, Jia W, Wang S, Whittaker J, Katsoyannis PG, Weiss MA. Enhancing the activity of a protein by stereospecific unfolding: conformational life cycle of insulin and its evolutionary origins. J Biol Chem, 2009, 284: 14586–14596
Xu B, Huang K, Chu YC, Hu SQ, Nakagawa S, Wang S, Wang RY, Whittaker J, Katsoyannis PG, Weiss MA. Decoding the cryptic active conformation of a protein by synthetic photoscanning: Insulin inserts a detachable arm between receptor domains. J Biol Chem, 2009, 284: 14597–14608
Zhao M, Wan ZL, Whittaker L, Xu B, Phillips NB, Katsoyannis PG, Ismail-Beigi F, Whittaker J, Weiss MA. Design of an insulin analog with enhanced receptor binding selectivity: Rationale, structure, and therapeutic implications. J Biol Chem, 2009, 284: 32178–32187
Smith BJ, Huang K, Kong G, Chan SJ, Nakagawa S, Menting JG, Hu SQ, Whittaker J, Steiner DF, Katsoyannis PG, Ward CW, Weiss MA, Lawrence MC. Structural resolution of a tandem hormone-binding element in the insulin receptor and its implications for design of peptide agonists. Proc Natl Acad Sci U S A, 2010, 107: 6771–6776
Whittaker J, Whittaker LJ, Roberts CT Jr, Phillips NB, Ismail-Beigi F, Lawrence MC, Weiss MA. α-Helical element at the hormone-binding surface of the insulin receptor functions as a signaling element to activate its tyrosine kinase. Proc Natl Acad Sci U S A, 2012, 109: 11166–11171
Menting JG, Whittaker J, Margetts MB, Whittaker LJ, Kong GK, Smith BJ, Watson CJ, Záková L, Kletvíková E, Jiráček J, Chan SJ, Steiner DF, Dodson GG, Brzozowski AM, Weiss MA, Ward CW, Lawrence MC. How insulin engages its primary binding site on the insulin receptor. Nature, 2013, 493: 241–245
Preston GW, Wilson AJ. Photo-induced covalent cross-linking for the analysis of biomolecular. Chem Soc Rev, 2013, 42: 3289–3301
Ziebell MR, Nirthanan S, Husain SS, Miller KW, Cohen JB. Identification of binding sites in the nicotinic acetylcholine receptor for [3H]azietomidate, a photoactivatable general anesthetic. J Biol Chem, 2004, 279: 17640–17649
Mackinnon AL, Taunton J. Target identification by diazirine photocross-linking and click chemistry. Curr Protoc Chem Biol, 2009, 1: 55–73
Fabry M, Schaefer E, Ellis L, Kojro E, Fahrenholz F, Brandenburg D. Detection of a new hormone contact site within the insulin receptor ectodomain by the use of a novel photoreactive insulin. J Biol Chem, 1992, 267: 8950–8956
Suchanek M, Radzikowska A, Thiele C. Photo-leucine and photomethionine allow identification of protein-protein interactions in living cells. Nat Methods, 2005, 2: 261–267
Bitan G, Scheibler L, Greenberg Z, Rosenblatt M, Chorev M. Mapping the integrin alpha v beta 3-ligand interface by photoaffinity cross-linking. Biochemistry, 1999, 38: 3414–3420
Bitan G, Scheibler L, Mierke DF, Rosenblatt M, Chorev M. Ligandintegrin alpha v beta 3 interaction determined by photoaffinity cross-linking: a challenge to the prevailing model. Biochemistry, 2000, 39: 11014–11023
Scheibler L, Mierke DF, Bitan G, Rosenblatt M, Chorev M. Identification of a contact domain between echistatin and the integrin alpha( v)beta(3) by photoaffinity cross-linking. Biochemistry, 2001, 40: 15117–15126
Yahalom D, Wittelsberger A, Mierke DF, Rosenblatt M, Alexander JM, Chorev M. Identification of the principal binding site for RGD-containing ligands in the alpha(V)beta(3) integrin: A photoaffinity cross-linking study. Biochemistry, 2002, 41: 8321–8331
Chen HT, Warfield L, Hahn S. The positions of TFIIF and TFIIE in the RNA polymerase II transcription preinitiation complex. Nat Struct Mol Biol, 2007, 14: 696–703
Grunbeck A, Huber T, Abrol R, Trzaskowski B, Goddard WA 3rd, Sakmar TP. Genetically encoded photo-cross-linkers map the binding site of an allosteric drug on a G protein-coupled receptor. ACS Chem Biol, 2012, 7: 967–972
Schwarz R, Tänzler D, Ihling CH, Müller MQ, Kölbel K, Sinz A. Monitoring conformational changes in peroxisome proliferatoractivated receptor α by a genetically encoded photoamino acid, cross-linking, and mass spectrometry. J Med Chem, 2013, 56: 4252–4263
Schäffer L. A model for insulin binding to the insulin receptor. Eur J Biochem, 1994, 221: 1127–1132
Wang L, Brock A, Herberich B, Schultz PG. Expanding the genetic code of Escherichia coli. Science, 2001, 292: 498–500
Chin JW, Santoro SW, Martin AB, King DS, Wang L, Schultz PG. Addition of p-azido-L-phenylalanine to the genetic code of Escherichia coli. J Am Chem Soc, 2002, 124: 9026–9027
Chin JW, Martin AB, King DS, Wang L, Schultz PG. Addition of a photo-cross-linking amino acid to the genetic code of Escherichia Coli. Proc Natl Acad Sci U S A, 2002, 99: 11020–11024
Wang L, Xie J, Schultz PG. Expanding the genetic code. Annu Rev Biophys Biomol Struct, 2006, 35: 225–249
Wan W, Huang Y, Wang Z, Russell WK, Pai PJ, Russell DH, Liu WR. A facile system for genetic incorporation of two different noncanonical amino acids into one protein in Escherichia coli. Angew Chem Int Ed Engl, 2010, 49: 3211–3214
Huang Y, Russell WK, Wan W, Pai PJ, Russell DH, Liu W. A convenient method for genetic incorporation of multiple noncanonical amino acids into one protein in Escherichia coli. Mol Biosyst, 2010, 6: 683–686
Wang Q, Wang L. New methods enabling efficient incorporation of unnatural amino acids in yeast. J Am Chem Soc. 2008, 130: 6066–6067
Hino N, Okazaki Y, Kobayashi T, Hayashi A, Sakamoto K, Yokoyama S. Protein photo-cross-linking in mammalian cells by sitespecific incorporation of a photoreactive amino acid. Nat Methods, 2005, 2: 201–206
Ye S, Köhrer C, Huber T, Kazmi M, Sachdev P, Yan EC, Bhagat A, RajBhandary UL, Sakmar TP. Site-specific incorporation of keto amino acids into functional G protein-coupled receptors using unnatural amino acid mutagenesis. J Biol Chem, 2008, 283: 1525–1533
Janz JM, Ren Y, Looby R, Kazmi MA, Sachdev P, Grunbeck A, Haggis L, Chinnapen D, Lin AY, Seibert C, McMurry T, Carlson KE, Muir TW, Hunt S 3rd, Sakmar TP. Direct interaction between an allosteric agonist pepducin and the chemokine receptor CXCR4. J Am Chem Soc, 2011, 133: 15878–15881
Ye S, Huber T, Vogel R, Sakmar TP. FTIR analysis of GPCR activation using azido probes. Nat Chem Biol, 2009, 5: 397–399
Ye S, Zaitseva E, Caltabiano G, Schertler GF, Sakmar TP, Deupi X, Vogel R. Tracking G-protein-coupled receptor activation using genetically encoded infrared probes. Nature, 2010, 464: 1386–1389
Yan H, Zhong G, Xu G, He W, Jing Z, Gao Z, Huang Y, Qi Y, Peng B, Wang H, Fu L, Song M, Chen P, Gao W, Ren B, Sun Y, Cai T, Feng X, Sui J, Li W. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. Elife, 2012, 1: e00049
Hino N, Oyama M, Sato A, Mukai T, Iraha F, Hayashi A, KozukaHata H, Yamamoto T, Yokoyama S, Sakamoto K. Genetic incorporation of a photo-crosslinkable amino acid reveals novel protein complexes with GRB2 in mammalian cells. J Mol Biol, 2011, 406: 343–353
Coin I, Perrin MH, Vale WW, Wang L. Photo-cross-linkers incorporated into G-protein-coupled receptors in mammalian cells: A ligand comparison. Angew Chem Int Ed Engl, 2011, 50: 8077–8081
Beatty KE, Liu JC, Xie F, Dieterich DC, Schuman EM, Wang Q, Tirrell DA. Fluorescence visualization of newly synthesized proteins in mammalian cells. Angew Chem Int Ed Engl, 2006, 45: 7364–7367
Ngo JT, Tirrell DA. Noncanonical amino acids in the interrogation of cellular protein synthesis. Acc Chem Res, 2011, 44: 677–685
Baruah H, Puthenveetil S, Choi YA, Shah S, Ting AY. An engineered aryl azide ligase for site-specific mapping of protein-protein interactions through photo-cross-linking. Angew Chem Int Ed Engl, 2008, 47: 7018–7021
Kanoh N, Asami A, Kawatani M, Honda K, Kumashiro S, Takayama H, Simizu S, Amemiya T, Kondoh Y, Hatakeyama S, Tsuganezawa K, Utata R, Tanaka A, Yokoyama S, Tashiro H, Osada H. Photocross-linked small-molecule microarrays as chemical genomic tools for dissecting protein-ligand interactions. Chem Asian J, 2006, 1: 789–797