Analysis of pig’s coronary arterial blood flow with detailed anatomical data

Springer Science and Business Media LLC - Tập 25 - Trang 204-217 - 1997
Ghassan S. Kassab1, Jeff Berkley1, Yuan-Cheng B. Fung1
1Department of Bioengineering, University of California San Diego, La Jolla, USA

Tóm tắt

Blood flow to perfuse the muscle cells of the heart is distributed by the capillary blood vessels via the coronary arterial tree. Because the branching pattern and vascular geometry of the coronary vessels in the ventricles and atria are nonuniform, the flow in all of the coronary capillary blood vessels is not the same. This nonuniformity of perfusion has obvious physiological meaning, and must depend on the anatomy and branching pattern of the arterial tree. In this study, the statistical distribution of blood pressure, blood flow, and blood volume in all branches of the coronary arterial tree is determined based on the anatomical branching pattern of the coronary arterial tree and the statistical data on the lengths and diameters of the blood vessels. Spatial nonuniformity of the flow field is represented by dispersions of various quantities (SD/mean) that are determined as functions of the order numbers of the blood vessels. In the determination, we used a new, complete set of statistical data on the branching pattern and vascular geometry of the coronary arterial trees. We wrote hemodynamic equations for flow in every vessel and every node of a circuit, and solved them numerically. The results of two circuits are compared: oneasymmetric model satisfies all anatomical data (including the meanconnectivity matrix) and the other, asymmetric model, satisfies all mean anatomical data except the connectivity matrix. It was found that the mean longitudinal pressure drop profile as functions of the vessel order numbers are similar in both models, but the asymmetric model yields interesting dispersion profiles of blood pressure and blood flow. Mathematical modeling of the anatomy and hemodynamics is illustrated with discussions on its accuracy.

Tài liệu tham khảo

Bassingthwaighte, J. B., R. B. King, and S. A. Roger. Fractal nature of regional myocardial blood flow heterogeneity.Circ. Res. 65:578–590, 1989. Chen, I. H. A mathematical representation for vessel networks. II.J. Theor. Biol. 104:647–654, 1983. Chilian, W. M., C. L. Eastham, and M. L. Marcus. Microvascular distribution of coronary vascular resistance in beating left ventricle.Am. J. Physiol. 251:H779-H788, 1986. Chilian, W. M., S. M. Layne, E. C. Klausner, C. L. Eastham, and M. L. Marcus. Redistribution of coronary microvascular resistance produced by dipyridamole.Am. J. Physiol. 256:H383-H390, 1989. Fenton, B. M., and B. W. Zweifach. Microcirculatory model relating geometrical variation to changes in pressure and flow rate.Ann. Biomed. Eng. 9:303–321, 1981. Fung, Y. C. Biodynamics: Circulation. New York: Springer-Verlag, 1984, pp. 10–12. Fung, Y. C. Biomechanics: Motion, Flow, Stress, and Growth, New York: Springer-Verlag, 1990, pp. 229–234. Gross, J. F., M. Intaglietta, and B. W. Zweifach. Network model of pulsatile hemodynamics in the microcirculation of the rabbit omentum.Am. J. Physiol. 226:1117–1123, 1974. Haworth, S. T., J. H. Linehan, T. A. Bronikowski, and C. A. Dawson. A hemodynamic model representation of the dog lung.J. Appl. Physiol. 70:15–26, 1991. Hoffman, J. I. Heterogeneity of myocardial blood flow.Basic Res. Cardiol. 90:103–111, 1995. Hoffman, J. I., and J. A. Spaan. Pressure-flow relations in the coronary circulation.Physiol. Rev. 70:331–390, 1990. Hudetz, A. G., K. A. Conger, J. H. Halsey, M. Pal, O. Dohan, and A. G. B. Kovach. Pressure distribution in the pial arterial system of rats based on morphometric data and mathematical models.J. Cereb. Blood Flow Metab. 7:342–355, 1987. Intaglietta, D., R. Richardson, and W. R. Tompkins. Blood pressure, flow, and elastic properties in microvessels of cat omentum.Am. J. Physiol. 221:922–928, 1971. Kanatsuka, H., K. G. Lamping, C. L. Eastham, M. L. Marcus, and K. C. Dellsperger. Coronary microvascular resistance in hypertensive cats.Circ. Res. 68:726–733, 1991. Kassab, G. S. Morphometry of the Coronary Arteries in the Pig. La Jolla: University of California, San Diego, Ph.D. Thesis, 1990. Kassab, G. S., and Y. C. Fung. Topology and dimensions of pig coronary capillary network.Am. J. Physiol. 267 (Heat Circ. Physiol. 36):H319-H325, 1994. Kassab, G. S., K. Imoto, F. C. White, C. A. Rider, Y. C. Fung, and C. M. Bloor. Coronary arterial tree remodeling in right ventricular hypertrophy.Am. J. Physiol. 265(Part 2):H366-H375, 1993. Kassab, G. S., D. H. Lin, and Y. C. Fung. Morphometry of pig coronary venous system.Am. J. Physiol. 267 (Heart Circ. Physiol. 36):H2100-H2113, 1994. Kassab, G. S., C. A. Rider, N. J. Tang, and Y. C. Fung. Morphometry of pig coronary arterial trees.Am. J. Physiol. 265(Heart Circ. Physiol. 34):H350-H365, 1993. Lee, J. S., and S. Nellis. Modeling study on the distribution of flow and volume in the microcirculation of cat mesentery.Ann. Biomed. Eng. 2:206–216, 1974. Levitt, D. G., B. Sircar, N. Lifson, and E. J. Lender. Model for mucosal circulation of rabbit small intestine.Am. J. Physiol. 237:E373-E382, 1979. Lipowsky, H. H., and B. W. Zweifach. Network analysis of microcirculation of cat mesentery.Microvasc. Res. 7:73–83, 1974. Mayrovitz, H. N., M. P. Wiedeman, and A. Noordergraaf. Analytical characterization of mcirovascular resistance distribution.Bull. Math. Biol. 38:71–82, 1976. Nellis, S. H., K. L. Carroll, and M. Eggleston. Measurement of phasic velocities in vessels of intact freely beating hearts.Am. J. Physiol. 260 (Heart Circ. Physiol. 29):H1264-H1275, 1991. Popel, A. S. A model of pressure and flow distribution in branching networks.J. Appl. Mech. 47:247–253, 1980. Pries, A. R., T. W. Secomb, P. Gaehtgens, and J. F. Gross. Blood flow in microvascular networks. Experiments and simulation.Circ. Res. 67:826–834, 1990. Schmid-Schoenbein, G. W. A theory of blood flow in skeletal muscle.J. Biomech. Eng. Trans. ASME 110:20–26, 1986. Skalak, T. C. A Mathematical Hemodynamic Network Model of the Microcirculation in Skeletal Muscle, Using Measured Blood Vessel Distensibility and Topology. University of California, San Diego (University Microfilms International No. DA8418303), Ph.D. Thesis, 1984. Spaan, J. A. Coronary Blood Flow: Mechanics, Distribution, and Control. Boston: Kluwer Academic, 1991. Tillmanns, H., M. Steinhausen, H. Leinberger, H. Thederan, and W. Kubler. Pressure measurements in the terminal vascular bed of the epimyocardium of rats and cats.Circ. Res. 49:1202–1211, 1981. VanBavel, E., and J. A. Spaan. Branching patterns in the porcine coronary arterial tree: estimation of flow heterogeneity.Circ. Res. 71:1200–1212, 1992. Zhuang, F. Y., Y. C. Fung, and R. T. Yen. Analysis of blood flow in cat’s lung with detailed anatomical and elasticity data.J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 55:1341–1448, 1983.