Analysis of past experimental data in literature to determine conditions for high performance in biodiesel production

Biofuels, Bioproducts and Biorefining - Tập 10 Số 4 - Trang 422-434 - 2016
Niyazi Alper Tapan1, Ramazan Yıldırım2, M. Erdem Günay3
1Gazi University, Maltepe-Ankara, Turkey
2Boğaziçi University, Bebek, Istanbul, Turkey
3Istanbul Bilgi University, Eyup-Istanbul, Turkey

Tóm tắt

AbstractIn this study, published experimental works on catalytic transesterification were analyzed to determine the most important variables affecting fatty acid conversion and the most suitable ranges of these variables for high performance. A database of 1324 data points was constructed from the experimental results in 31 representative papers published between 2008 and 2014, and this database was analyzed using artificial neural network (ANN) and decision tree (DT) techniques. It was found from ANN analysis that the most important variable for high fatty acid conversion was reaction time (with about 40% relative importance) followed by catalyst loading, alcohol:oil molar ratio, operating temperature, and support type with similar relative importance (about 10% each). DT analysis revealed 14 combinations of conditions leading to high performance, and some of these seemed to be generalizable for the use for the future studies; some heuristics were also derived from these generalizable conditions. © 2016 Society of Chemical Industry and John Wiley & Sons, Ltd

Từ khóa


Tài liệu tham khảo

10.1002/adsc.200505160

10.1021/ie801872t

10.1002/bbb.1435

10.1016/j.biortech.2005.11.022

10.1007/s11244-014-0337-x

10.1002/bbb.159

10.1007/s11244-010-9562-0

10.1016/j.biombioe.2011.06.011

10.1016/j.apcata.2010.09.030

10.1021/ef700778r

10.1016/j.jcat.2006.10.027

10.1021/ie051402o

10.1016/j.apcata.2010.04.031

10.1039/c2cy00432a

10.1021/cr068360d

10.1016/j.fuel.2011.06.049

10.1016/j.apcata.2007.09.028

10.1016/S1389-1723(01)80288-7

10.1016/j.biombioe.2007.10.006

10.1007/s11244-010-9563-z

10.1016/j.cherd.2015.11.018

10.1016/j.enpol.2015.12.019

10.1021/ie2013955

10.1002/cctc.201200665

10.1016/j.jpowsour.2010.12.061

10.1002/cctc.201100186

10.1016/j.energy.2013.08.002

10.1021/ie5010866

10.1016/j.renene.2014.07.054

10.1016/j.renene.2012.08.070

10.1016/j.fuel.2014.11.058

10.1016/j.apcata.2007.09.035

10.1016/j.energy.2010.12.043

Wilamowski BM, 1999, Efficient algorithm for training neural networks with one hidden layer, Proceedings of International Joint Conference on Neural Networks, 3, 725

10.1016/j.fuproc.2010.08.017

10.1016/j.cej.2011.01.009

10.1016/j.fuproc.2010.05.014

10.1016/j.fuproc.2007.02.006

10.1016/S0016-2361(98)00025-8

10.1016/S0960-8524(03)00202-5

10.1016/j.apcata.2014.02.016

10.1016/j.fuproc.2010.05.034

10.1021/ie800542k

10.1007/BF03326210

10.1016/j.enconman.2008.12.023

10.1016/j.apcatb.2011.04.015

10.1016/j.enconman.2010.01.017

10.1016/j.fuproc.2013.10.021

10.1016/j.fuproc.2008.08.008

10.1016/j.enconman.2014.01.034

10.1016/j.biortech.2013.10.046

10.1016/j.biortech.2008.06.049

10.1016/j.fuel.2007.10.019

10.1016/j.fuel.2014.10.038

10.1016/j.renene.2014.01.008