Analysis of outcomes in radiation oncology: An integrated computational platform

Medical Physics - Tập 36 Số 5 - Trang 1680-1689 - 2009
Dezhi Liu1, M. Ajlouni2, Jian‐Yue Jin2, Samuel Ryu2, Farzan Siddiqui2, Assem Patel2, Benjamin Movsas2, Indrin J. Chetty2
1Department of Radiation Oncology, Henry Ford Health System, 2799 West Grand Boulevard, Detroit, Michigan 48202, USA.
2Department of Radiation Oncology, Henry Ford Health System, 2799 West Grand Boulevard, Detroit, Michigan 48202

Tóm tắt

Radiotherapy research and outcome analyses are essential for evaluating new methods of radiation delivery and for assessing the benefits of a given technology on locoregional control and overall survival. In this article, a computational platform is presented to facilitate radiotherapy research and outcome studies in radiation oncology. This computational platform consists of (1) an infrastructural database that stores patient diagnosis, IMRT treatment details, and follow‐up information, (2) an interface tool that is used to import and export IMRT plans in DICOM RT and AAPM/RTOG formats from a wide range of planning systems to facilitate reproducible research, (3) a graphical data analysis and programming tool that visualizes all aspects of an IMRT plan including dose, contour, and image data to aid the analysis of treatment plans, and (4) a software package that calculates radiobiological models to evaluate IMRT treatment plans. Given the limited number of general‐purpose computational environments for radiotherapy research and outcome studies, this computational platform represents a powerful and convenient tool that is well suited for analyzing dose distributions biologically and correlating them with the delivered radiation dose distributions and other patient‐related clinical factors. In addition the database is web‐based and accessible by multiple users, facilitating its convenient application and use.

Từ khóa


Tài liệu tham khảo

10.1016/j.jacr.2007.05.020

1998 W. T. McGivney S. J. Perkel Oncology: Practice guidelines and outcomes measurement 17 19

10.1016/j.ijrobp.2003.12.008

10.1016/S1470‐2045(06)70904‐4

10.1016/j.radonc.2005.12.005

10.1016/0360-3016(88)90318-5

10.1016/0360-3016(91)90172-Z

10.1016/0360-3016(91)90171-Y

10.1118/1.597056

10.1080/09553009214552071

10.1016/0167‐8140(91)90093‐V

10.1016/0360-3016(93)90156-P

10.1118/1.595312

Thames H. D., 1987, Fractionation in Radiotherapy

10.1016/0360-3016(88)90098-3

10.1016/S0360‐3016(02)04208‐6

10.1118/1.1568978

10.1088/0031‐9155/47/23/308

10.1088/0031‐9155/52/13/N03

10.1088/0031‐9155/50/5/017

10.1088/0031‐9155/52/6/011

10.1016/S0958‐3947(00)00031‐5

10.1120/jacmp.26.149

10.7326/0003-4819-129-2-199807150-00009

10.1136/jamia.1999.0060006

10.1200/JCO.2004.00.0588

M. G.Herman “Computer networking and information systems in radiation oncology ” AAPM Refresher Course (1999).

Dahl R. A., 2002, Radiation oncology information systems, Med. Phys., 29, 1364

10.1259/0007-1285-62-740-679

Niemierko A., 1999, A generalized concept of equivalent uniform dose (EUD), Med. Phys., 26, 1100

10.1016/S0360‐3016(01)02585‐8

10.2307/3576626

10.1016/0360-3016(89)90972-3

10.1016/S0360‐3016(02)03986‐X

10.1016/S0360‐3016(99)00183‐2

10.1016/S0360‐3016(01)01685‐6

10.1016/S0167‐8140(97)01907‐5

10.1016/0360-3016(91)90173-2

10.1118/1.2961385

Chetty I. J., 2008, Assessment of target volumes and dose coverage in 4D imaging and planning of lung cancer patients treated with stereotactic body radiotherapy (SBRT), Radiother. Oncol., 88, S30

10.3174/ajnr.A1137

10.1016/j.ijrobp.2008.02.060

Song D., 2004, Stereotactic body radiation therapy: Rationale, techniques, applications, and optimization, Oncology, 18, 1419

10.1016/j.currproblcancer.2005.05.001

10.1200/JCO.2006.07.5937