Analysis of mixed prostate specific antigen and Tween-20 sessile droplets for the reduction in interfacial PSA adsorption
Tài liệu tham khảo
Amin, 2014, Protein aggregation, particle formation, characterization & rheology, Curr. Opin. Colloid Interface Sci., 19, 438, 10.1016/j.cocis.2014.10.002
Mahler, 2009, Protein aggregation: pathways, induction factors and analysis, J. Pharm. Sci., 98, 2909, 10.1002/jps.21566
Kanthe, 2020, Armoring the interface with surfactants to prevent the adsorption of monoclonal antibodies, ACS Appl. Mater. Interfaces., 12, 9977, 10.1021/acsami.9b21979
Kanthe, 2021, No ordinary proteins: adsorption and molecular orientation of monoclonal antibodies, Sci. Adv., 7, 10.1126/sciadv.abg2873
Bos, 2001, Interfacial rheological properties of adsorbed protein layers and surfactants: a review, Adv. Colloid Interface Sci., 91, 437, 10.1016/S0001-8686(00)00077-4
Shieh, 2015, Predicting the agitation-induced aggregation of monoclonal antibodies using surface tensiometry, Mol. Pharm., 12, 3184, 10.1021/acs.molpharmaceut.5b00089
Stenstam, 2001, The lysozyme-dodecyl sulfate system. An example of protein-surfactant aggregation, Langmuir, 17, 7513, 10.1021/la011096t
Dobson, 1999, Protein misfolding, evolution and disease, Trends Biochem. Sci., 24, 329, 10.1016/S0968-0004(99)01445-0
Dorokhin, 2015, Molecular interference in antibody-antigen interaction studied with magnetic force immunoassay, N. Biotechnol., 32, 450, 10.1016/j.nbt.2015.01.012
Otzen, 2011, Protein-surfactant interactions: a tale of many states, Biochim. Biophys. Acta - Proteins Proteomics., 1814, 562, 10.1016/j.bbapap.2011.03.003
Narsimhan, 2018, Role of proteins on formation, drainage, and stability of liquid food foams, Annu. Rev. Food Sci. Technol., 9, 45, 10.1146/annurev-food-030216-030009
Khan, 2015, Key interactions of surfactants in therapeutic protein formulations: a review, Eur. J. Pharm. Biopharm., 97, 60, 10.1016/j.ejpb.2015.09.016
Lee, 2011, Molecular origins of surfactant-mediated stabilization of protein drugs, Adv. Drug Deliv. Rev., 63, 1160, 10.1016/j.addr.2011.06.015
Dimitriadis, 1979, Effect of detergents on antibody-antigen interaction, Anal. Biochem., 98, 445, 10.1016/0003-2697(79)90165-9
Kerwin, 1998, Effects of tween 80 and sucrose on acute short-term stability and long- term storage at -20°C of a recombinant hemoglobin, J. Pharm. Sci., 87, 1062, 10.1021/js980140v
Chou, 2005, Effects of Tween 20® and Tween 80® on the stability of Albutropin during agitation, J. Pharm. Sci., 94, 1368, 10.1002/jps.20365
Mahler, 2005, Induction and analysis of aggregates in a liquid IgG1-antibody formulation, Eur. J. Pharm. Biopharm., 59, 407, 10.1016/j.ejpb.2004.12.004
Martín-Rodríguez, 1997, A comparative study on the adsorption of Triton X-100 and Tween 20 onto latexes with different interfacial properties, J. Colloid Interface Sci., 187, 139, 10.1006/jcis.1996.4681
Kannan, 2019, Linking aggregation and interfacial properties in monoclonal antibody-surfactant formulations, J. Colloid Interface Sci., 550, 128, 10.1016/j.jcis.2019.04.060
Van Oss, 1995, Hydrophobic, hydrophilic and other interactions in epitope-paratope binding, Mol. Immunol., 32, 199, 10.1016/0161-5890(94)00124-J
Rathaur, 2020, Investigating the effect of antibody–antigen reactions on the internal convection in a sessile droplet via microparticle image velocimetry and DLVO analysis, Langmuir, 10.1021/acs.langmuir.0c01162
Chen, P. Prokop, R.M. Susnar, S.S. Neumann, A.W. Interface, W. Plot, E.I. Interfacial tensions of protein solutions using slope rig ∼ dr, (1998) 303–339.
Liao, Z. Lampe, J.W. Ayyaswamy, P.S. Eckmann, D.M. Dmochowski, I.J. Protein assembly at the air à water interface studied by fluorescence microscopy, (2011) 12775–12781.
Kapp, 2015, Competitive adsorption of monoclonal antibodies and nonionic surfactants at solid hydrophobic surfaces, J. Pharm. Sci., 104, 593, 10.1002/jps.24265
Mikhailovskaya, 2011, Formation of protein /surfactant adsorption layer at the air /, Water Interface as Stud. Dilational Surface Rheol., 9971
Joshi, 2009, Adsorption and function of recombinant factor VIII at the air –, Water Interface in the Presence of Tween, 80, 3099
Krägel, 1995, Dynamic surface tension and surface shear rheology studies of mixed β-lactoglobulin/Tween 20 systems, Colloids Surfaces A Physicochem. Eng. Asp., 98, 127, 10.1016/0927-7757(95)03102-J
S.J. McClellan, E.I. Franses, Exclusion of bovine serum albumin from the air /water interface by sodium myristate, 30 (2003) 1–11. https://doi.org/10.1016/S0927-7765(03)00021-3.
Rodríguez Niño, 1998, Surface tension of bovine serum albumin and tween 20 at the air-aqueous interface, JAOCS, J. Am. Oil Chem. Soc., 75, 1241, 10.1007/s11746-998-0169-6
Sett, 2018, Analysis of the distinct pattern formation of globular proteins in the presence of micro- and nanoparticles, J. Phys. Chem. B., 122, 8972, 10.1021/acs.jpcb.8b05325
Trantum, 2014, Biosensor design based on Marangoni flow in an evaporating drop, Lab Chip, 14, 315, 10.1039/C3LC50991E
Trantum, 2012, Biomarker-mediated disruption of coffee-ring formation as a low resource diagnostic indicator, Langmuir, 28, 2187, 10.1021/la203903a
Wong, 2011, Nanochromatography driven by the coffee ring effect, Anal. Chem., 83, 1871, 10.1021/ac102963x
Pathak, 2017, Evaporation dynamics of mixed-nanocolloidal sessile droplets, Langmuir, 33, 14123, 10.1021/acs.langmuir.7b03578
L. Bansal, P. Seth, B. Murugappan, S. Basu, Suppression of coffee ring : (Particle) size matters suppression of coffee ring : (Particle) size matters, 211605 (2018). 10.1063/1.5034119.
Morales, 2013, Surfactant-mediated control of colloid pattern assembly and attachment strength in evaporating droplets, Langmuir, 29, 1831, 10.1021/la304685b
M. Parsa, S. Harmand, K. Se, Mechanisms of pattern formation from dried sessile drops, 254 (2018) 22–47. 10.1016/j.cis.2018.03.007.
Malla, 2019, Analysis of profile and morphology of colloidal deposits obtained from evaporating sessile droplets, Colloids Surfaces A Physicochem. Eng. Asp., 567, 150, 10.1016/j.colsurfa.2019.01.028
Browne, 2004, Protein adsorption onto polystyrene surfaces studied by XPS and AFM, Surf. Sci., 553, 155, 10.1016/j.susc.2004.01.046
D. Lazos, S. Franzka, M. Ulbricht, size-selective protein adsorption to polystyrene surfaces by self-assembled grafted poly (ethylene glycols) with varied chain lengths, (2005) 8774–8784.
Koutsopoulos, 2007, Adsorption of trypsin on hydrophilic and hydrophobic surfaces, Langmuir, 23, 2000, 10.1021/la062238s
Anyfantakis, 2015, Modulation of the coffee-ring effect in particle/surfactant mixtures: the importance of particle-interface interactions, Langmuir, 31, 4113, 10.1021/acs.langmuir.5b00453
A. Marin, R. Liepelt, M. Rossi, C.J. Ka, Surfactant-driven flow transitions in evaporating droplets, (2016) 1593–1600. 10.1039/C5SM02354H.
Jung, 2017, Surfactant effects on droplet dynamics and deposition patterns: a lattice gas model, Soft Matter, 13, 6529, 10.1039/C7SM01224A
Truskett, 2003, Influence of surfactants on an evaporating drop: fluorescence images and particle deposition patterns, Langmuir, 19, 8271, 10.1021/la030049t
Hu, 2005, Analysis of the effects of Marangoni stresses on the microflow in an evaporating sessile droplet, Langmuir, 21, 3972, 10.1021/la0475270
Darras, 2018, Transitional bulk-solutal Marangoni instability in sessile drops, Phys. Rev. E., 98, 1, 10.1103/PhysRevE.98.062609
Wu, 2019, Drying droplets with soluble surfactants, Langmuir, 35, 14734, 10.1021/acs.langmuir.9b02229
Picknett, 1977, The evaporation of sessile or pendant drops in still air, J. Colloid Interface Sci., 61, 336, 10.1016/0021-9797(77)90396-4
Erbil, 2002, Drop evaporation on solid surfaces: constant contact angle mode, Langmuir, 18, 2636, 10.1021/la011470p
C. Bourgès-Monnier, M.E.R. Shanahan, Influence of evaporation on contact angle, Langmuir. 11 (1995) 2820–2829. 10.1021/la00007a076.
Harikrishnan, 2017, Effects of interplay of nanoparticles, surfactants and base fluid on the surface tension of nanocolloids, Eur. Phys. J. E., 40, 16, 10.1140/epje/i2017-11541-5
Tepavčević, 2017, Binary mixed micelles of polyoxyethylene (10) stearyl ether with polysorbate 20 and polysorbate 60: thermodynamic description, J. Surfactants Deterg., 20, 379, 10.1007/s11743-016-1910-z
Ruiz-Peña, 2010, Physico-chemical studies of molecular interactions between non-ionic surfactants and bovine serum albumin, Colloids Surfaces B Biointerfaces, 75, 282, 10.1016/j.colsurfb.2009.08.046
M.J. Rosen, J.T. Kunjappu, Surfactants and Interfacial Phenomena, 2012.
Martos, 2017, Trends on analytical characterization of polysorbates and their degradation products in biopharmaceutical formulations, J. Pharm. Sci., 106, 1722, 10.1016/j.xphs.2017.03.001
Timasheff, 1993, The control of protein stability and association by weak interactions with water: how do solvents affect these processes?, Annu. Rev. Biophys. Biomol. Struct., 22, 67, 10.1146/annurev.bb.22.060193.000435
Bam, 1998, Tween protects recombinant human growth hormone against agitation-induced damage via hydrophobic interactions, J. Pharm. Sci., 87, 1554, 10.1021/js980175v
Kim, 2014, Protein effects on surfactant adsorption suggest the dominant mode of surfactant-mediated stabilization of protein, J. Pharm. Sci., 103, 1337, 10.1002/jps.23908
Fayzi, 2020, A note on the synergistic effect of surfactants and nanoparticles on rising bubble hydrodynamics, Chem. Eng. Process. - Process Intensif., 155, 10.1016/j.cep.2020.108068
Martín-Rodríguez, 1994, A comparative study on the electrokinetic behavior of bovine serum albumin molecules adsorbed onto different polymer colloids, Colloids Surfaces A Physicochem. Eng. Asp., 92, 113, 10.1016/0927-7757(94)02827-3
Kronberg, 1984, The effect of surface polarity on the adsorption of nonionic surfactants. I. Thermodynamic considerations, J. Colloid Interface Sci., 102, 410, 10.1016/0021-9797(84)90243-1
De Dier, 2014, Thermocapillary fingering in surfactant-laden water droplets, Langmuir, 30, 13338, 10.1021/la503655j
Sempels, 2013, Auto-production of biosurfactants reverses the coffee ring effect in a bacterial system, Nat. Commun., 4, 1, 10.1038/ncomms2746
van Gaalen, 2021, Marangoni circulation in evaporating droplets in the presence of soluble surfactants, J. Colloid Interface Sci., 584, 622, 10.1016/j.jcis.2020.10.057
Wang, 2019, Influence of substrate temperature on Marangoni convection instabilities in a sessile droplet evaporating at constant contact line mode, Int. J. Heat Mass Transf., 131, 1270, 10.1016/j.ijheatmasstransfer.2018.11.155
A. Askounis, Y. Kita, M. Kohno, Y. Takata, V. Koutsos, K. Sefiane, Influence of local heating on Marangoni flows and evaporation kinetics of pure water drops, (2017).
Pradhan, 2017, Evaporation induced natural convection inside a droplet of aqueous solution placed on a superhydrophobic surface, Colloids Surfaces A Physicochem. Eng. Asp., 530, 1, 10.1016/j.colsurfa.2017.07.034
Kang, 2013, Evaporation-induced saline Rayleigh convection inside a colloidal droplet, Phys. Fluids., 25
Larson, 2014, Transport and deposition patterns in drying sessile droplets, AIChE J., 60, 1538, 10.1002/aic.14338
Hu, 2006, Marangoni effect reverses coffee-ring depositions, J. Phys. Chem. B., 110, 7090, 10.1021/jp0609232
Majumder, 2012, Overcoming the “coffee-stain” effect by compositional Marangoni-flow-assisted drop-drying, J. Phys. Chem. B., 116, 6536, 10.1021/jp3009628
Kang, 2000, Onset of solutal Marangoni convection in a suddenly desorbing liquid layer, AIChE J., 46, 15, 10.1002/aic.690460104
Verbrugghe, 2010, Quantification of hydrophilic ethoxylates in polysorbate surfactants using diffusion NMR spectroscopy, J. Pharm. Biomed. Anal., 51, 583, 10.1016/j.jpba.2009.09.025
Nimdeo, 2014, Measurement of mass diffusivity using interferometry through sensitivity analysis, Ind. Eng. Chem. Res., 53, 19338, 10.1021/ie502601h
Kaushal, 2022, Competing thermal and solutal advection decelerates droplet evaporation on heated surfaces, Eur. J. Mech. - B/Fluids., 91, 129, 10.1016/j.euromechflu.2021.10.003
Jaiswal, 2018, Ionic solubility and solutal advection governed augmented evaporation kinetics of salt solution pendant droplets, Phys. Fluids., 30
S. Tarafdar, Y.Y. Tarasevich, M.D. Choudhury, T. Dutta, D. Zang, Droplet drying patterns on solid substrates : from hydrophilic to superhydrophobic contact to levitating drops, 2018 (2018).
Soulié, 2015, The evaporation behavior of sessile droplets from aqueous saline solutions, Phys. Chem. Chem. Phys., 17, 22296, 10.1039/C5CP02444G
Yildirim Erbil, 2015, Control of stain geometry by drop evaporation of surfactant containing dispersions, Adv. Colloid Interface Sci., 222, 275, 10.1016/j.cis.2014.08.004
Still, 2012, Surfactant-induced Marangoni eddies alter the coffee-rings of evaporating colloidal drops, Langmuir, 28, 4984, 10.1021/la204928m
Bazazi, 2020, Retarding spreading of surfactant drops on solid surfaces: the interplay between the marangoni effect and capillary flows, J. Colloid Interface Sci.
Hu, 2002, Evaporation of a sessile droplet on a substrate, J. Phys. Chem. B., 106, 1334, 10.1021/jp0118322
P. Katre, S. Balusamy, S. Banerjee, L.D. Chandrala, K.C. Sahu, Evaporation dynamics of a sessile droplet of binary mixture laden with nanoparticles, (2021). 10.1021/acs.langmuir.1c00806.
Marin, 2016, Surfactant-driven flow transitions in evaporating droplets, Soft Matter, 12, 1593, 10.1039/C5SM02354H
van Gaalen, 2022, Competition between thermal and surfactant-induced Marangoni flow in evaporating sessile droplets, J. Colloid Interface Sci., 622, 892, 10.1016/j.jcis.2022.04.146
Ganesh Kumar, 2017, Impact of chemical reaction on marangoni boundary layer flow of a casson nano liquid in the presence of uniform heat source sink, Diffus. Found., 11, 22, 10.4028/www.scientific.net/DF.11.22
Bratsun, 2004, On Marangoni convective patterns driven by an exothermic chemical reaction in two-layer systems, Phys. Fluids., 16, 1082, 10.1063/1.1648641
Troian, 1989, Fingering instability in thin wetting films, Phys. Rev. Lett., 62, 1496, 10.1103/PhysRevLett.62.1496
Deegan, 2000, Pattern formation in drying drops, Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top., 61, 475
Hu, 2005, Analysis of the microfluid flow in an evaporating sessile droplet, Langmuir, 21, 3963, 10.1021/la047528s
Malla, 2020, Colloidal deposit of an evaporating sessile droplet on a non-uniformly heated substrate, Colloids Surfaces A, 584, 10.1016/j.colsurfa.2019.124009
Brochard, 1989, Motions of droplets on solid surfaces induced by chemical or thermal gradients, Langmuir, 5, 432, 10.1021/la00086a025
Bhardwaj, 2010, Self-assembly of colloidal particles from evaporating droplets: role of DLVO interactions and proposition of a phase diagram, Langmuir, 26, 7833, 10.1021/la9047227
Semenov, 2014, Simultaneous spreading and evaporation: recent developments, Adv. Colloid Interface Sci., 206, 382, 10.1016/j.cis.2013.08.006
Theodorakis, 2015, Superspreading: mechanisms and molecular design, Langmuir, 31, 2304, 10.1021/la5044798
Hamraoui, 2004, Fingering phenomena during spreading of surfactant solutions, Colloids Surfaces A Physicochem. Eng. Asp., 250, 215, 10.1016/j.colsurfa.2003.12.035
Garcia-Cordero, 2017, Sessile droplets for chemical and biological assays, Lab Chip, 17, 2150, 10.1039/C7LC00366H