Phân tích biểu hiện miRNA liên quan đến gen Lr46 chịu trách nhiệm kháng APR ở lúa mì (Triticum aestivum L.)
Tóm tắt
Từ khóa
Tài liệu tham khảo
Agarwal S, Saini RG (2009) Undescribed wheat gene for partial leaf rust and stripe rust resistance from Thatcher derivatives RL6058 and 90RN2491 carrying Lr34. J Appl Genet 50(3):199–204. https://doi.org/10.1007/BF03195673
Ambawat S, Sharma P, Yadav NR, Yadav RC (2013) MYB transcription factor genes as regulators for plant responses: an overview. Physiol Mol Biol Plants 19(3):307–321. https://doi.org/10.1007/s12298-013-0179-1
Chu Z, Chen J, Xu H, Dong Z, Chen F, Cui D (2016) Identification and comparative analysis of microRNA in wheat (Triticum aestivum L.) callus derived from mature and immature embryos during in vitro culture. Front Plant Sci:7–1302. https://doi.org/10.3389/fpls.2016.01302
Cobo N, Wanjugi H, Lagudah ES, Dubcovsky J (2018) A high- resolution map of wheat QYr.ucw-1BL, an adult plant stripe rust resistance locus in the same chromosomal region as Yr29. The Plant Genome 12(1). https://doi.org/10.3835/plantgenome2018.08.0055
Dong Z, Hegarty JM, Zhang J, Zhang W, Chao S, Chen X, Zhou Y et al (2017) Validation and characterization of a QTL for adult plant resistance to stripe rust on wheat chromosome arm 6BS (Yr78). Theor Appl Genet 130:2127–2137. https://doi.org/10.1007/s00122-017-2946-9
Ellis JG, Lagudah ES, Spielmeyer W, Dodds PN (2014) The past, present and future of breeding rust resistant wheat. Front Plant Sci 5:641. https://doi.org/10.3389/fpls.2014.00641eCollection 2014
Feng H, Duan X, Zhang Q, Li X, Wang B, Huang L, Wang X, Kang Z (2014) The target gene of tae-miR164, a novel NAC transcription factor from the NAM subfamily, negatively regulates resistance of wheat to stripe rust. Mol Plant Pathol 15:284–296. https://doi.org/10.1111/mpp.12089
Gogół A, Leśniowska-Nowak J, Nowak M, Okoń S, Kowalczyk K (2015) Development of multiplex PCR for Lr21 and Pm4b resistance genes detection in common wheat (Triticum aestivum L.). Biuletyn Instytutu Hodowli i Aklimatyzacji Roślin 70(3):21–30
Hao J, Tu L, Hu H, Tan J, Deng F, Tang W, Nie Y, Zhang X (2012) GbTCP, a cotton TCP transcription factor, confers fibre elongation and root hair development by a complex regulating system. J Exp Bot 63:6267–6281. https://doi.org/10.1093/jxb/ers278
Hu G, Lei Y, Liu J, Hao M, Zhang Z, Tang Y, Chen A, Wu J (2020) The ghr-miR164 and GhNAC100 modulate cotton plant resistance against Verticillium dahlia. Plant Sci 293:110438. https://doi.org/10.1016/j.plantsci.2020.110438
Khraiwesh B, Zhu JK, Zhu J (2012) Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim Biophys Acta
Kim JH, Woo HR, Kim J, Lim PO, Lee IC, Choi SH, Hwang D, Nam HG (2009) Trifurcate feed-forward regulation of age-dependent cell death involving miR164 in Arabidopsis. Science 323:1053–1057. https://doi.org/10.1126/science.1166386
Kohli, MM (1986) Wheat varieties of the southern cone region of South America: names, parentage, pedigrees and origins. CIMMYT southern cone wheat program, Santiago
Kolmer JA, Singh RP, Garvin DF, Viccars L, William HM, Huerta-Espino J, Ogbonnaya FC, Raman H, Orford S, Bariana HS, Lagudah ES (2008) Analysis of the Lr34/Yr18 rust resistance region in wheat germplasm. Crop Sci 48(5):1841. https://doi.org/10.2135/cropsci2007.08.0474
Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, Selter LL, Keller B (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323(5919):1360 LP–1361363. https://doi.org/10.1126/science.1166453
Kumar D, Singh D, Kanodia P, Prabhu KV, Kumar M, Mukhopadhyay K (2014) Discover of novel leaf rust responsive microRNAs in wheat and prediction of their target genes. Journal of Nucleic Acids
Kumar D, Dutta S, Singh D, Prabhu KV, Kumar M, Mukhopadhyay K (2016) Uncovering leaf rust responsive miRNAs in wheat (Triticum aestivum L.) using high-throughput sequencing and prediction of their targets through degradome analysis. Planta 245(1):161
Lagudah ES (2011) Molecular genetics of race non-specific rust resistance in wheat. Euphytica 179:81–91. https://doi.org/10.1007/s10681-010-0336-3
Lagudah ES, Krattinger SG, Herrera-Foessel S, Singh RP, Huerta-Espino J, Spielmeyer W, Brown-Guedira G, Selter LL, Keller B (2009) Gene-specific markers for the wheat gene Lr34/Yr18/Pm38 which confers resistance to multiple fungal pathogens. Theor Appl Genet 119(5):889–898. https://doi.org/10.1007/s00122-009-1097-z
Lan C, Zhang Y, Herrera-Foessel SA, Basnet BR, Huerta-Espino J, Lagudah ES et al (2015) Identification and characterization of pleiotropic and co-located resistance loci to leaf rust and stripe rust in bread wheat cultivar Sujata. Theor Appl Genet 128:549–561. https://doi.org/10.1007/s00122-015-2454-8
Li J, Yoe L, Shen Y, Sheng Y, Zhan X, Xu G, Xing B (2017) Phenanthrene-responsive microRNAs and their targets in wheat roots. Chemosphere 186:588–598
Lillemo M, Asalf B, Singh RP, Huerta-Espino J, Chen XM, He ZH et al (2008) The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar. Theor Appl Genet 116:1155–1166. https://doi.org/10.1007/s00122-008-0743-1
Liu H, Qin C, Chen Z, Zuo T, Yang X, Zhou H, Xu M, Cao S, Shen Y, Lin H, He X, Zhang Y, Li L, Ding H, Lübberstedt T, Zhangetal Z (2014) Identification of miRNAs and their target genes in developing maize ears by combined small RNA and degradome sequencing. BMC Genomics 15:25. https://doi.org/10.1186/1471-2164-15-25
Mehta Y.R. (2014). Wheat diseases and their management. Pp.137-142. Springer International Publishing Switzerland. https://doi.org/10.1007/978-3-319-06465-9
Moore JW, Herrera-Foessel S, Lan C, Schnippenkoetter W, Ayliffe M, Huerta-Espino J et al (2015) A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. Nat Genet 47:1494–1498. https://doi.org/10.1038/ng.39
Pietrusińska A (2010) The use of molecular markers for introduction of leaf rust (Puccinia recondita f.sp. tritici) and powdery mildew (Blumeria graminis f.sp. tritici) resistance genes in winter wheat (Triticum aestivum). Biuletyn Instytutu Hodowli i Aklimatyzacji Roślin 256:31–44
Ponce-Molina LJ, Huerta-Espino J, Singh RP, Basnet BS, Lagudah ES, Aguilar-Rincón VH et al (2018) Characterization of adult plant resistance to leaf rust and stripe rust in Indian wheat cultivar ‘New Pusa 876’. Crop Sci 58:630–638. https://doi.org/10.2135/cropsci2017.06.0396
Ren Y, Singh RP, Basnet BR, Lan CX, Huerta-Espino J, Lagudah ES et al (2017) Identification and mapping of adult plant resistance loci to leaf rust and stripe rust in common wheat cultivar Kundan. Plant Dis 101:456–463. https://doi.org/10.1094/PDIS-06-16-0890-RE
Sieber P, Wellmer F, Gheyselinck J, Riechmann JL, Meyerowitz EM (2007) Redundancy and specialization among plant microRNAs: role of the MIR164 family in developmental robustness. Development 134:1051–1060. https://doi.org/10.1242/dev.02817
Singh RP, Huerta-Espino J(1997) Effect of leaf rust resistance gene Lr34 on grain yield and agronomic traits of spring wheat. Crop Science 37 (2): cropsci1997.0011183X003700020014x.https://doi.org/10.2135/cropsci1997.0011183X00370020014x
Singh RP, Mujeeb-Kazi A, Huerta-Espino J (1998) Lr46: a gene conferring slow-rusting resistance to leaf rust in wheat. Phytopathology 88(9):890–894. https://doi.org/10.1094/PHYTO.1998.88.9.890
Singh RP, Huerta-Espino J, Bhavani S, Herrera-Foessel SA, Singh D, Singh PK et al (2011) Race non-specific resistance to rust diseases in CIMMYT spring wheats. Euphytica 179:175–186. https://doi.org/10.1007/s10681-010-0322-9
Singh RP, Herrera-Foessel SA, Huerta-Espino J, Lan CX, Basnet BR, Bhavani S, et al. (2013) Pleiotropic gene Lr46/Yr29/Pm39/Ltn2 confers slow rusting, adult plant resistance to wheat stem rust fungus. In: Proceedings of the Borlaug Global Rust Initiative Technical Workshop, 19–22 Aug. 2013, New Delhi, India. Indian Council of Agricultural Research, New Delhi. p. 17.1
Spanic V, Rouse M, Kolmer JA, Anderson JA (2014) Leaf and stem seedling rust resistance in wheat cultivars grown in Croatia. Euphytica 203(2):437–448. https://doi.org/10.1007/s10681-014-1312-0
Strzembicka A, Czajowski G, Karska K (2013) Characteristics of the winter wheat breeding materials in respect of resistance to leaf rust Puccinia triticina. Biuletyn Instytutu Hodowli i Aklimatyzacji Roślin 268:7–14
Suenaga K, Singh RP, Huerta-Espino J, William HM (2003) Microsatellite markers for genes Lr34/Yr18 and other quantitative trait loci for leaf rust and stripe rust resistance in bread wheat. Phytopathology 93(7):881–890. https://doi.org/10.1094/PHYTO.2003.93.7.881
Tyczewska A, Bąkowska-Żywicka K, Gracz J, Twardowski T (2016) Stress responsive non-protein coding RNAs, in: Abiotic and biotic stress—recent advances and future perspectives, InTech, Chapter 7: 153–181. https://doi.org/10.5772/60477
Wang C, He X, Wang X, Zhang S, Guo X (2017) ghr-miR5272a-mediated regulation of GhMKK6 gene transcription contributes to the immune response in cotton. J Exp Bot 68:5895–5906. https://doi.org/10.1093/jxb/erx373
William M, Singh RP, Huerta-Espino J, Ortiz Islas S, Hoisington D (2003) Molecular marker mapping of leaf rust resistance gene Lr46 and its association with stripe rust resistance gene Yr29 in wheat. 93(2):153–159
Yu F, Huaxia Y, Lu W, Wu C, Cao X, Guo X (2012) GhWRKY15, a member of the WRKY transcription factor family identified from cotton (Gossypium hirsutum L.), is involved in disease resistance and plant development. BMC Plant Biol 12:133. https://doi.org/10.1186/1471-2229-12-144