Analysis of mechanical properties of fly ash and bauxite residue based geopolymer concrete using ANN, Random Forest and Counter propagation neural network
Tóm tắt
Từ khóa
Tài liệu tham khảo
Carabba, L., Manzi, S., & Bignozzi, M. C. (2016). Superplasticizer addition to carbon fly ash geopolymers activated at room temperature. Materials (Basel), 9. https://doi.org/10.3390/ma9070586.
Çeçen, F., Özbayrak, A., & Aktaş, B. (2023). Experimental modal analysis of fly ash-based geopolymer concrete specimens via modal circles, mode indication functions, and mode shape animations. Cement and Concrete Composites, 137. https://doi.org/10.1016/j.cemconcomp.2023.104951.
Chandra, K. S., Krishnaiah, S., Reddy, N. G., et al. (2021). Strength Development of Geopolymer Composites made from Red mud–fly Ash as a Subgrade Material in Road Construction. J Hazardous Toxic Radioact Waste, 25, 04020068. https://doi.org/10.1061/(asce)hz.2153-5515.0000575.
Chindaprasirt, P., Chareerat, T., Hatanaka, S., & Cao, T. (2011). High-strength Geopolymer using fine high-calcium fly Ash. Journal of Materials in Civil Engineering, 23, 264–270. https://doi.org/10.1061/(asce)mt.1943-5533.0000161.
Chun, P., Ujike, I., Mishima, K., et al. (2020). Random forest-based evaluation technique for internal damage in reinforced concrete featuring multiple nondestructive testing results. Construction and Building Materials, 253, 119238. https://doi.org/10.1016/j.conbuildmat.2020.119238.
Fjodorova, N., Vračko, M., Jezierska, A., & Novič, M. (2010). Counter propagation artificial neural network categorical models for prediction of carcinogenicity for non-congeneric chemicals. Sar and Qsar in Environmental Research, 21, 57–75. https://doi.org/10.1080/10629360903563250.
Görhan, G., & Kürklü, G. (2014). The influence of the NaOH solution on the properties of the fly ash-based geopolymer mortar cured at different temperatures. Compos Part B Eng, 58, 371–377. https://doi.org/10.1016/j.compositesb.2013.10.082.
Hardjito, D., & Rangan, B. V. (2005). Development and properties of low-calcium fly ash-based geopolymer concrete. Res Rep GC 94.
He, J., Zhang, J., Yu, Y., & Zhang, G. (2012). The strength and microstructure of two geopolymers derived from metakaolin and red mud-fly ash admixture: A comparative study. Construction and Building Materials, 30, 80–91. https://doi.org/10.1016/j.conbuildmat.2011.12.011.
Huang, Y., Huo, Z., Ma, G., et al. (2023). Multi-objective optimization of fly ash-slag based geopolymer considering strength, cost and CO2 emission: A new framework based on tree-based ensemble models and NSGA-II. J Build Eng, 68, 106070. https://doi.org/10.1016/j.jobe.2023.106070.
John, S. K., Nadir, Y., & Girija, K. (2021). Effect of source materials, additives on the mechanical properties and durability of fly ash and fly ash-slag geopolymer mortar: A review. Construction and Building Materials, 280, 122443. https://doi.org/10.1016/j.conbuildmat.2021.122443.
Kaveh, A., & Iranmanesh, A. (1998). Comparative study of Backpropagation and Improved Counterpropagation Neural Nets in structural analysis and optimization. Int J Sp Struct, 13, 177–185. https://doi.org/10.1177/026635119801300401.
Kaveh, A., & Khalegi, A. (1998). Prediction of strength for concrete specimens using artificial neural network. Asian J Civ Eng, 2, 1–13.
Kaveh, A., & Khalegi, A. (2009). Prediction of strength for concrete specimens using Artificial neural networks. Adv Eng Comput Technol, 53, 165–171.
Kaveh, A., & Khavaninzadeh, N. (2023). Efficient training of two ANNs using four meta-heuristic algorithms for predicting the FRP strength. Structures, 52, 256–272. https://doi.org/10.1016/j.istruc.2023.03.178.
Kaveh, A., Gholipour, Y., & Rahami, H. (2008). Optimal Design of Transmission Towers using genetic algorithm and neural networks. Int J Sp Struct, 23, 1–19. https://doi.org/10.1260/026635108785342073.
Kaveh, A., Kalateh-Ahani, M., & Fahimi-Farzam, M. (2013). Constructability optimal design of reinforced concrete retaining walls using a multi-objective genetic algorithm. Struct Eng Mech, 47, 227–245. https://doi.org/10.12989/sem.2013.47.2.227.
Kaveh, A., Bakhshpoori, T., & Hamze-Ziabari, S. M. (2018). GMDH-based prediction of shear strength of FRP-RC beams with and without stirrups. Computers and Concrete an International Journal, 22(2), 197–207.
Kaveh, A., Mottaghi, L., & Izadifard, R. A. (2022). Sustainable design of reinforced concrete frames with non-prismatic beams. Engineering Computations, 38, 69–86. https://doi.org/10.1007/s00366-020-01045-4.
Kaya, K., & Soyer-Uzun, S. (2016). Evolution of structural characteristics and compressive strength in red mud-metakaolin based geopolymer systems. Ceramic International, 42, 7406–7413. https://doi.org/10.1016/j.ceramint.2016.01.144.
Kayhan, G., & İşeri, İ. (2023). Counter Propagation Network based Extreme Learning Machine. Neural Processing Letters, 55, 857–872. https://doi.org/10.1007/s11063-022-11021-2.
Ke, X., Bernal, S. A., Ye, N., et al. (2015). One-part geopolymers based on thermally treated red Mud/NaOH blends. Journal of the American Ceramic Society, 98, 5–11. https://doi.org/10.1111/jace.13231.
Koshy, N., Dondrob, K., Hu, L., et al. (2019). Synthesis and characterization of geopolymers derived from coal gangue, fly ash and red mud. Construction and Building Materials, 206, 287–296. https://doi.org/10.1016/j.conbuildmat.2019.02.076.
Liu, J., Li, X., Lu, Y., & Bai, X. (2020). Effects of Na/Al ratio on mechanical properties and microstructure of red mud-coal metakaolin geopolymer. Construction and Building Materials, 263, 120653. https://doi.org/10.1016/j.conbuildmat.2020.120653.
Liu, J., Doh, J., Ong, D. E. L., et al. (2023). Investigation on red mud and fly ash-based geopolymer: Quantification of reactive aluminosilicate and derivation of effective Si / Al molar ratio. J Build Eng, 71, 106559. https://doi.org/10.1016/j.jobe.2023.106559.
Mohapatra, A., Bose, P., Pandit, S. S., et al. (2020). Bulk utilization of Red Mud in Geopolymer Based products. Adv Sci Eng, 12, 86–91. https://doi.org/10.32732/ase.2020.12.2.86.
Morsy, A. M., Ragheb, A. M., Shalan, A. H., & Mohamed, O. H. (2022). Mechanical characteristics of GGBFS/FA-Based Geopolymer concrete and its environmental impact. Practical Periodical on Structural Design and Construction, 27, 1–14. https://doi.org/10.1061/(asce)sc.1943-5576.0000686.
Naghizadeh, A., Ekolu, S. O., Tchadjie, L. N., & Solomon, F. (2023). Long-term strength development and durability index quality of ambient-cured fly ash geopolymer concretes. Construction and Building Materials, 374, 130899. https://doi.org/10.1016/j.conbuildmat.2023.130899.
Nguyen, H. T., Pham, V. Q., Phong, D. T., & Nguyen, N. H. (2018). Utilization of Red Mud and Rice Husk Ash for Synthesizing Lightweight Heat utilization of Red Mud and Rice Husk Ash for Synthesizing Lightweight Heat resistant geopolymer –. Based Materials. 9–15.
Olivia, M., & Nikraz, H. (2012). Properties of fly ash geopolymer concrete designed by Taguchi method. Materials and Design, 36, 191–198. https://doi.org/10.1016/j.matdes.2011.10.036.
Posi, P., Teerachanwit, C., Tanutong, C., et al. (2013). Lightweight geopolymer concrete containing aggregate from recycle lightweight block. Materials and Design, 52, 580–586. https://doi.org/10.1016/j.matdes.2013.06.001.
Pratap, B., Mondal, S., & Hanumantha Rao, B. (2023a). Synthesis of alkali-activated mortar using phosphogypsum-neutralised bauxite residue. Environ Geotech 1–12. https://doi.org/10.1680/jenge.22.00104.
Pratap, B., Mondal, S., & Rao, B. H. (2023b). NaOH molarity influence on mechanical and durability properties of geopolymer concrete made with fly ash and phosphogypsum. Structures, 56, 105035. https://doi.org/10.1016/j.istruc.2023.105035.
Pratap, B., Shubham, K., Mondal, S., & Hanumantha, B. (2023c). Exploring the potential of neural network in assessing mechanical properties of geopolymer concrete incorporating fly ash and phosphogypsum in pavement applications. Asian J Civ Eng. https://doi.org/10.1007/s42107-023-00735-w.
Qaidi, S. M. A., Tayeh, B. A., Isleem, H. F., et al. (2022). Sustainable utilization of red mud waste (bauxite residue) and slag for the production of geopolymer composites: A review. Case Stud Constr Mater, 16, e00994. https://doi.org/10.1016/j.cscm.2022.e00994.
Rashidian-Dezfouli, H., & Rangaraju, P. R. (2021). Study on the effect of selected parameters on the alkali-silica reaction of aggregate in ground glass fiber and fly ash-based geopolymer mortars. Construction and Building Materials, 271, 121549. https://doi.org/10.1016/j.conbuildmat.2020.121549.
Reddy, M. S., Dinakar, P., & Rao, B. H. (2018). Mix design development of fly ash and ground granulated blast furnace slag based Geopolymer concrete. J Build Eng, 20, 712–722. https://doi.org/10.1016/j.jobe.2018.09.010.
Ren, B., Zhao, Y., Bai, H., et al. (2021). Eco-friendly geopolymer prepared from solid wastes: A critical review. Chemosphere, 267, 128900. https://doi.org/10.1016/j.chemosphere.2020.128900.
Sahour, H., Gholami, V., Torkaman, J., et al. (2021). Random forest and extreme gradient boosting algorithms for streamflow modeling using vessel features and tree-rings. Environmental Earth Sciences, 80, 1–14. https://doi.org/10.1007/s12665-021-10054-5.
Singh, S., Aswath, M. U., & Ranganath, R. V. (2020). Performance assessment of bricks and prisms: Red mud based geopolymer composite. J Build Eng, 32, 101462. https://doi.org/10.1016/j.jobe.2020.101462.
Sirca, G. F., & Adeli, H. (2004). Counterpropagation Neural Network Model for Steel Girder Bridge Structures. J Bridg Eng, 9, 55–65. https://doi.org/10.1061/(asce)1084-0702(2004)9:1(55).
Tammam, Y., Uysal, M., & Canpolat, O. (2021). Effects of alternative ecological fillers on the mechanical, durability, and microstructure of fly ash-based geopolymer mortar. Eur J Environ Civ Eng, 0, 1–24. https://doi.org/10.1080/19648189.2021.1925157.
Vidyadhara, V., & Ranganath, R. V. (2023). Upcycling of pond ash in cement-based and geopolymer-based composite: A review. Construction and Building Materials, 379, 130949. https://doi.org/10.1016/j.conbuildmat.2023.130949.
Xue, S., Li, M., Jiang, J., et al. (2019). Phosphogypsum stabilization of bauxite residue: Conversion of its alkaline characteristics. J Environ Sci (China), 77, 1–10. https://doi.org/10.1016/j.jes.2018.05.016.
Ye, N., Chen, Y., Yang, J., et al. (2016a). Co-disposal of MSWI fly ash and Bayer red mud using an one-part geopolymeric system. Journal of Hazardous Materials, 318, 70–78. https://doi.org/10.1016/j.jhazmat.2016.06.042.
Ye, N., Yang, J., Liang, S., et al. (2016b). Synthesis and strength optimization of one-part geopolymer based on red mud. Construction and Building Materials, 111, 317–325. https://doi.org/10.1016/j.conbuildmat.2016.02.099.
Zhang, M., Zhao, M., Zhang, G., et al. (2018). Reaction kinetics of red mud-fly ash based geopolymers: Effects of curing temperature on chemical bonding, porosity, and mechanical strength. Cement and Concrete Composites, 93, 175–185. https://doi.org/10.1016/j.cemconcomp.2018.07.008.
Zhang, J., Ma, G., Huang, Y., et al. (2019). Modelling uniaxial compressive strength of lightweight self-compacting concrete using random forest regression. Construction and Building Materials, 210, 713–719. https://doi.org/10.1016/j.conbuildmat.2019.03.189.
Zhang, P., Wang, K., Wang, J., et al. (2021). Macroscopic and microscopic analyses on mechanical performance of metakaolin/fly ash based geopolymer mortar. Journal of Cleaner Production, 294, 126193. https://doi.org/10.1016/j.jclepro.2021.126193.