Analysis of marking criteria for mesh adaptation in Cosserat elasticity

MATEC Web of Conferences - Tập 245 - Trang 08004 - 2018
Maria Churilova1
1Peter the Great St Petersburg Polytechnic University, St.Petersburg, Russian Federation

Tóm tắt

The article is devoted to comparison of finite element marking criteria for adaptive mesh refinement while solving plane Cosserat elasticity problems. The goal is to compare the resulting adaptive meshes obtained with different marking strategies. Mesh refinement and error control is done using the functional type a posteriori error majorant. Implemented algorithms use the zero-order Raviart-Thomas approximation on triangular meshes. Four widely used marking criteria are utilized for mesh adaptation. The comparative analysis is presented for two plane-strain problems.

Từ khóa


Tài liệu tham khảo

Cosserat E., Cosserat F., Théorie des corps d’eformables (1909)

Nowacki W., Theory of elasticity (1975)

Morozov N.F., Mathematical problems of crack theory (1984)

Providas E., Kattis M.A., Comput. Struct., 80 (27-30) (2002)

Zhang H.W., Wang H., Wriggers P., Schrefler B.A., Comput. Mech., 36 (6) (2005)

Wheel M.A., Int. J. Numer. Methods Eng., 75 (8) (2008)

Hadjesfandiari A., Dargush G., Int. J. Numer. Methods Eng., 89 (5) (2012)

Sadovskaya O., Sadovskii V., Adv. Struct. Mat., 21 (2012)

Perić D., Yu J., Owen D.R.J., Int. J. Numer. Methods Eng., 37 (8) (1994)

Repin S., Frolov M., J. Math. Sci., 181 (2) (2012)

Frolov M., J. Appl. Math. Mech., 78 (4) (2014)

Frolov M., Numerical Mathematics and Advanced Applications ENUMATH 2013, Lecture Notes in Computational Science and Engineering, 103 (Springer, 2015)

Churilova M.A., Frolov M.E., Mater. Phys. Mech., 32 (2017)

Churilova M.A., Frolov M.E., J. Phys. Conf. Ser., to appear (2018)

Babuška I., Strouboulis T., Upadhyay C.S., Gangaraj S.K., Copps K., Int. J. Numer. Methods Eng., 37(7) (1994)

Ladeveze P., Oden J.T., Advances in adaptive computational methods in mechanics (Elsevier, 1998)

Szabó B., Babuška I., Introduction to finite element analysis. Formulation, verification and validation (Wiley, 2011)

Mali O., Neittaanmäki P., Repin S., Accuracy Verification Methods. Theory and algorithms, 32 (Springer, 2014)

Repin S., Xanthis L.S., Comput. Methods Appl. Mech. Engrg., 138 (1-4) (1996)

Repin S., Math. Comp., 69 (2000)

Repin S., A posteriori estimates for partial differential equations (De Gruyter, 2008)

Neittaanmäki P., Repin S., Reliable methods for computer simulation. Error control and a posteriori estimates (Elsevier, 2004)

Churilova M.A., St. Petersburg Polytechnical University Journal: Physics and Mathematics, 1 (4) (2015)

Dörfler W., SIAM J. Numer. Anal., 33 (3) (1996)

Mekchay K., Nochetto R.H., SIAM J. Numer. Anal., 43 (5) (2005)

Raviart P.A., Thomas J.M., Lect. Notes in Math., 606 (1977)