Analysis of inter-patient variations in tumour growth rate
Tóm tắt
Inter-patient variations in tumour growth rate are usually interpreted as biological heterogeneity among patients due to, e.g., genetic variability. However, these variations might be a result of non-exponential, e.g. the Gompertzian, tumour growth kinetics. The aim was to study if the natural tumour growth deceleration, i.e. non-exponential growth, is a dominant factor in such variations. The correlation between specific growth rate (SGR) and the logarithm of tumour volume, Ln(V), was calculated for tumours in patients with meningioma, hepatocellular carcinoma, pancreatic carcinoma, primary lung cancer, post-chemotherapy regrowth of non-small cell lung cancer (NSCLC), and in nude mice transplanted with human midgut carcinoid GOT1, a tumour group which is biologically more homogeneous than patient groups. The correlation between SGR and Ln(V) was statistically significant for meningioma, post-chemotherapy regrowth of NSCLC, and the mouse model, but not for any other patient groups or subgroups, based on differentiation and clinical stage. This method can be used to evaluate the homogeneity of tumour growth kinetics among patients. Homogeneity of post-chemotherapy regrowth pattern of NSCLC suggests that, in contrast to untreated tumours, the remaining resistant cells or stem cells (if exist) might have similar biological characteristics among these patients.
Tài liệu tham khảo
Bassukas ID, Hofmockel G, Tsatalpas P, Eberle V, Maurer-Schultze B: Prognostic relevance of the intrinsic growth deceleration of the first passage xenografts of human renal cell carcinomas. Cancer. 1996, 78: 2170-2172. 10.1002/(SICI)1097-0142(19961115)78:10<2170::AID-CNCR19>3.0.CO;2-W.
Norton L: A Gompertzian model of human breast cancer growth. Cancer Res. 1988, 48: 7067-7071.
Withers HR, Lee SP: Modeling growth kinetics and statistical distribution of oligometastases. Semin Radiat Oncol. 2006, 16: 111-119. 10.1016/j.semradonc.2005.12.006.
Iwata K, Kawasaki K, Shigesada N: A dynamical model for the growth and size distribution of multiple metastatic tumors. J Theor Biol. 2000, 203: 177-186. 10.1006/jtbi.2000.1075.
Piccart-Gebhart MJ: Mathematics and oncology: a match for life?. J Clin Oncol. 2003, 21: 1425-1428. 10.1200/JCO.2003.12.068.
Schmidt C: The Gompertzian view: Norton honored for role in establishing cancer treatment approach. J Natl Cancer Inst. 2004, 96: 1492-1493. 10.1093/jnci/96.20.1492.
Mehrara E, Forssell-Aronsson E, Ahlman H, Bernhardt P: Specific growth rate versus doubling time for quantitative characterization of tumor growth rate. Cancer Res. 2007, 67: 3970-3975. 10.1158/0008-5472.CAN-06-3822.
Mehrara E, Forssell-Aronsson E, Ahlman H, Bernhardt P: Quantitative analysis of tumor growth rate and changes in tumor marker level: specific growth rate versus doubling time. Acta Oncol. 2009, 48: 591-597. 10.1080/02841860802616736.
Afenya EK, Calderon CP: Diverse ideas on the growth kinetics of disseminated cancer cells. Bull Math Biol. 2000, 62: 527-542. 10.1006/bulm.1999.0165.
Bajzer Z: Gompertzian growth as a self-similar and allometric process. Growth Dev Aging. 1999, 63: 3-11.
Hart D, Shochat E, Agur Z: The growth law of primary breast cancer as inferred from mammography screening trials data. Br J Cancer. 1998, 78: 382-387. 10.1038/bjc.1998.503.
Wennerberg J, Willen R, Trope C: Changes in histology and cell kinetics during the growth course of xenografted squamous cell carcinoma. Arch Otolaryngol Head Neck Surg. 1988, 114: 781-787. 10.1001/archotol.1988.01860190085030.
Spratt JA, von Fournier D, Spratt JS, Weber EE: Decelerating growth and human breast cancer. Cancer. 1993, 71: 2013-2019. 10.1002/1097-0142(19930315)71:6<2013::AID-CNCR2820710615>3.0.CO;2-V.
Spratt JS, Meyer JS, Spratt JA: Rates of growth of human neoplasms: part II. J Surg Oncol. 1996, 61: 68-83. 10.1002/1096-9098(199601)61:1<68::AID-JSO2930610102>3.0.CO;2-E.
Pavelic ZP, Porter CW, Allen LM, Mihich E: Cell population kinetics of fast- and slow-growing transplantable tumors derived from spontaneous mammary tumors of the DBA/2 Ha-DD mouse. Cancer Res. 1978, 38: 1533-1538.
Bassukas ID, Maurer-Schultze B: Mechanism of growth retardation of the adenocarcinoma EO 771. Radiat Environ Biophys. 1987, 26: 125-141. 10.1007/BF01211407.
DeWys WD: Studies correlating the growth rate of a tumor and its metastases and providing evidence for tumor-related systemic growth-retarding factors. Cancer Res. 1972, 32: 374-379.
Prehn RT: The inhibition of tumor growth by tumor mass. Cancer Res. 1991, 51: 2-4.
Araujo RP, McElwain DL: A history of the study of solid tumour growth: the contribution of mathematical modelling. Bull Math Biol. 2004, 66: 1039-1091. 10.1016/j.bulm.2003.11.002.
Mehrara E, Forssell-Aronsson E, Johanson V, Kolby L, Hultborn R, Bernhardt P: A new method to estimate parameters of the growth model for metastatic tumours. Theor Biol Med Model. 2013, 10: 31-10.1186/1742-4682-10-31.
Mehrara E, Forssell-Aronsson E, Bernhardt P: Objective assessment of tumour response to therapy based on tumour growth kinetics. Brit J Cancer. 2011, 105: 682-686. 10.1038/bjc.2011.276.
Mehrara E, Forssell-Aronsson E, Bernhardt P: Objective assessment of tumour response to therapy based on tumour growth kinetics (vol 105, pg 682, 2011). Brit J Cancer. 2011, 105: 1468-1468. 10.1038/bjc.2011.436.
El Sharouni SY, Kal HB, Battermann JJ: Accelerated regrowth of non-small-cell lung tumours after induction chemotherapy. Br J Cancer. 2003, 89: 2184-2189. 10.1038/sj.bjc.6601418.
Wang JC, Sone S, Feng L, Yang ZG, Takashima S, Maruyama Y, Hasegawa M, Kawakami S, Honda T, Yamanda T: Rapidly growing small peripheral lung cancers detected by screening CT: correlation between radiological appearance and pathological features. Br J Radiol. 2000, 73: 930-937.
Furukawa H, Iwata R, Moriyama N: Growth rate of pancreatic adenocarcinoma: initial clinical experience. Pancreas. 2001, 22: 366-369. 10.1097/00006676-200105000-00005.
Taouli B, Goh JS, Lu Y, Qayyum A, Yeh BM, Merriman RB, Coakley FV: Growth rate of hepatocellular carcinoma: evaluation with serial computed tomography or magnetic resonance imaging. J Comput Assist Tomogr. 2005, 29: 425-429. 10.1097/01.rct.0000164036.85327.05.
Nakajima T, Moriguchi M, Mitsumoto Y, Katagishi T, Kimura H, Shintani H, Deguchi T, Okanoue T, Kagawa K, Ashihara T: Simple tumor profile chart based on cell kinetic parameters and histologic grade is useful for estimating the natural growth rate of hepatocellular carcinoma. Hum Pathol. 2002, 33: 92-99. 10.1053/hupa.2002.30194.
Saito Y, Matsuzaki Y, Doi M, Sugitani T, Chiba T, Abei M, Shoda J, Tanaka N: Multiple regression analysis for assessing the growth of small hepatocellular carcinoma: the MIB-1 labeling index is the most effective parameter. J Gastroenterol. 1998, 33: 229-235. 10.1007/s005350050075.
Nakamura M, Roser F, Michel J, Jacobs C, Samii M: The natural history of incidental meningiomas. Neurosurgery. 2003, 53: 62-70. 10.1227/01.NEU.0000068730.76856.58. discussion 70–61
Kolby L, Bernhardt P, Ahlman H, Wangberg B, Johanson V, Wigander A, Forssell-Aronsson E, Karlsson S, Ahren B, Stenman G, Nilsson O: A transplantable human carcinoid as model for somatostatin receptor-mediated and amine transporter-mediated radionuclide uptake. Am J Pathol. 2001, 158: 745-755. 10.1016/S0002-9440(10)64017-5.
Spratt JS, Meyer JS, Spratt JA: Rates of growth of human solid neoplasms: part I. J Surg Oncol. 1995, 60: 137-146. 10.1002/jso.2930600216.