Analysis of importance of pre-processing in prediction of hypertension
Tóm tắt
Từ khóa
Tài liệu tham khảo
LaFreniere D, Zulkernine F, Barber D, Martin K (2016) Using machine learning to predict hypertension from a clinical dataset. In: 2016 IEEE symposium series on computational intelligence (SSCI). IEEE, pp 1–7
Poli R, Cagnoni S, Livi R, Coppini G, Valli G (1991) A neural network expert system for diagnosing and treating hypertension. Computer 24(3):64–71
Echouffo-Tcheugui JB, Batty GD, Kivimäki M, Kengne AP (2013) Risk models to predict hypertension: a systematic review. PloS ONE 8(7):e67370
Srivastava P, Srivastava A, Burande A, Khandelwal A (2013) A note on hypertension classification scheme and soft computing decision making system. ISRN Biomath 2013:342970. https://doi.org/10.1155/2013/342970
Ture M, Kurt I, Kurum AT, Ozdamar K (2005) Comparing classification techniques for predicting essential hypertension. Expert Syst Appl 29(3):583–588
Japkowicz N (2000) The class imbalance problem: significance and strategies. In: Proceedings of the international conference on artificial intelligence
Ling CX, Li C (1998) Data mining for direct marketing: problems and solutions. In: KDD, vol 98, pp 73–79
Solberg AHS, Solberg R (1996) A large-scale evaluation of features for automatic detection of oil spills in ERS SAR images. In: International geoscience and remote sensing symposium, 1996 (IGARSS’96), remote sensing for a sustainable future. IEEE, vol 3, pp 1484–1486
Van Minh H, Soonthornthada K, Ng N, Juvekar S, Razzaque A, Ashraf A, Ahmed SM, Bich TH, Kanungsukkasem U (2009) Blood pressure in adult rural INDEPTH population in Asia. Global Health Action 2(1):2010
Ku WC, Jagadeesh GR, Prakash A, Srikanthan T (2016) A clustering-based approach for data-driven imputation of missing traffic data. In: 2016 IEEE forum on integrated and sustainable transportation systems (FISTS). IEEE, pp 1–6
Yozgatligil C, Aslan S, Iyigun C, Batmaz I (2013) Comparison of missing value imputation methods in time series: the case of Turkish meteorological data. Theor Appl Climatol 112(1–2):143–167