Analysis of importance of pre-processing in prediction of hypertension

K. Shobha1, S. Nickolas1
1Department of Computer Applications, National Institute of Technology, Tiruchirappalli, Tamilnadu, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

LaFreniere D, Zulkernine F, Barber D, Martin K (2016) Using machine learning to predict hypertension from a clinical dataset. In: 2016 IEEE symposium series on computational intelligence (SSCI). IEEE, pp 1–7

Poli R, Cagnoni S, Livi R, Coppini G, Valli G (1991) A neural network expert system for diagnosing and treating hypertension. Computer 24(3):64–71

Echouffo-Tcheugui JB, Batty GD, Kivimäki M, Kengne AP (2013) Risk models to predict hypertension: a systematic review. PloS ONE 8(7):e67370

Srivastava P, Srivastava A, Burande A, Khandelwal A (2013) A note on hypertension classification scheme and soft computing decision making system. ISRN Biomath 2013:342970. https://doi.org/10.1155/2013/342970

Ture M, Kurt I, Kurum AT, Ozdamar K (2005) Comparing classification techniques for predicting essential hypertension. Expert Syst Appl 29(3):583–588

Japkowicz N (2000) The class imbalance problem: significance and strategies. In: Proceedings of the international conference on artificial intelligence

Ling CX, Li C (1998) Data mining for direct marketing: problems and solutions. In: KDD, vol 98, pp 73–79

Solberg AHS, Solberg R (1996) A large-scale evaluation of features for automatic detection of oil spills in ERS SAR images. In: International geoscience and remote sensing symposium, 1996 (IGARSS’96), remote sensing for a sustainable future. IEEE, vol 3, pp 1484–1486

Van Minh H, Soonthornthada K, Ng N, Juvekar S, Razzaque A, Ashraf A, Ahmed SM, Bich TH, Kanungsukkasem U (2009) Blood pressure in adult rural INDEPTH population in Asia. Global Health Action 2(1):2010

Ku WC, Jagadeesh GR, Prakash A, Srikanthan T (2016) A clustering-based approach for data-driven imputation of missing traffic data. In: 2016 IEEE forum on integrated and sustainable transportation systems (FISTS). IEEE, pp 1–6

Yozgatligil C, Aslan S, Iyigun C, Batmaz I (2013) Comparison of missing value imputation methods in time series: the case of Turkish meteorological data. Theor Appl Climatol 112(1–2):143–167

Carpenter GA, Grossberg S (2017) Adaptive resonance theory. Springer, Berlin