Analysis of hydrogen isotopes retention in thermonuclear reactors with LIBS supported by machine learning

Spectrochimica Acta Part B: Atomic Spectroscopy - Tập 199 - Trang 106576 - 2023
P. Gąsior1, W. Gromelski1, M. Kastek1, A. Kwaśnik1
1IPPLM Institute of Plasma Physics and Laser Microfusion, Hery Street 23, 01-497, Warsaw, Poland

Tài liệu tham khảo

Aymar, 2002, The ITER design, Plasma Phys. Control. Fusion., 44, 519, 10.1088/0741-3335/44/5/304 Roth, 2009, Recent analysis of key plasma wall interactions issues for ITER, J. Nucl. Mater., 390–391, 1, 10.1016/j.jnucmat.2009.01.037 Brezinsek, 2017, Plasma-wall interaction studies within the EUROfusion consortium: Progress on plasma-facing components development and qualification, Nucl. Fusion., 57, 10.1088/1741-4326/aa796e Hirai, 2013, ITER tungsten divertor design development and qualification program, 1798 Federici, 1999, In-vessel tritium retention and removal in ITER, J. Nucl. Mater., 266–269, 14, 10.1016/S0022-3115(98)00876-9 Loarer, 2009, Fuel retention in tokamaks, J. Nucl. Mater., 390–391, 20, 10.1016/j.jnucmat.2009.01.039 Heinola, 2016, 167 Li, 2016, Review of LIBS application in nuclear fusion technology, Front. Phys., 11, 10.1007/s11467-016-0606-1 Maurya, 2020, A review of the LIBS analysis for the plasma-facing components diagnostics, J. Nucl. Mater., 541, 10.1016/j.jnucmat.2020.152417 van der Meiden, 2021, Team, monitoring of tritium and impurities in the first wall of fusion devices using a LIBS based diagnostic, Nucl. Fusion., 61, 10.1088/1741-4326/ac31d6 Gąsior, 2020, 138 Almaviva, 2020, LIBS measurements inside the FTU vessel mock-up by using a robotic arm, Fusion Eng. Des., 157, 10.1016/j.fusengdes.2020.111685 Almaviva, 2021, LIBS measurements inside the FTU vacuum vessel by using a robotic arm, Fusion Eng. Des., 169, 10.1016/j.fusengdes.2021.112638 Gasior, 2011, Laser induced breakdown spectroscopy as diagnostics for fuel retention and removal and wall composition in fusion reactors with mixed-material components, Fusion Eng. Des., 86, 1239, 10.1016/j.fusengdes.2011.02.046 Philipps, 2013, Development of laser-based techniques for in situ characterization of the first wall in ITER and future fusion devices, Nucl. Fusion., 53, 10.1088/0029-5515/53/9/093002 Maddaluno, 2019, Detection by LIBS of the deuterium retained in the FTU toroidal limiter, Nucl. Mater. Energy., 18 Colao, 2016, LIBS experiments for quantitative detection of retained fuel, Nucl. Mater. Energy., 12, 133, 10.1016/j.nme.2017.05.010 Suchoňová, 2016, Determination of deuterium depth profiles in fusion-relevant wall materials by nanosecond LIBS, Nucl. Mater. Energy., 0, 1 Xiao, 2013, Application of laser-induced breakdown spectroscopy for characterization of material deposits and tritium retention in fusion devices, Fusion Eng. Des., 88, 1813, 10.1016/j.fusengdes.2013.05.083 Ciucci, 1999, New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy, Appl. Spectrosc., 53, 960, 10.1366/0003702991947612 Dwivedi, 2021, CF-LIBS quantification and depth profile analysis of be coating mixed layers, Nucl. Mater. Energy., 27 NIST LIBS Database, (n.d.). https://physics.nist.gov/PhysRefData/ASD/LIBS/libs-form.html (accessed December 3, 2021). W.G. M. Kastek, P. Gąsior, SimulatedLIBS PyPI, (n.d.). doi:https://doi.org/10.5281/zenodo.6077131. De Temmerman, 2021, Data on erosion and hydrogen fuel retention in beryllium plasma-facing materials, Nucl. Mater. Energy., 27 Zaloznik, 2022, Improved scaling law for the prediction of deuterium retention in beryllium co-deposits, Nucl. Fusion., 62, 10.1088/1741-4326/ac4775 Hakola, 2020, Effect of composition and surface characteristics on fuel retention in beryllium-containing co-deposited layers, Phys. Scr., 2020 Orange Data Mining - Data Mining, (n.d.). https://orangedatamining.com/ (accessed December 6, 2021). Xu, 2020, Total alkali silica classification of rocks with LIBS: influences of the chemical and physical matrix effects, J. Anal. At. Spectrom., 35, 1641, 10.1039/D0JA00157K Sun, 2021, From machine learning to transfer learning in laser-induced breakdown spectroscopy: the case of rock analysis for Mars exploration, Sci. Rep., 1 C. Sun, F. Chen, J. Yu, L. Gao, L. Zou, M. Wu, S. Shabbir, W. Xu, Y. Tan, Y. Zhang, Z. Yue, Machine learning efficiently corrects LIBS spectrum variation due to change of laser fluence, Opt. Express, 28, 10, 14345–14356. doi:https://doi.org/10.1364/OE.392176.