Analysis of hydrogen isotopes retention in thermonuclear reactors with LIBS supported by machine learning
Tài liệu tham khảo
Aymar, 2002, The ITER design, Plasma Phys. Control. Fusion., 44, 519, 10.1088/0741-3335/44/5/304
Roth, 2009, Recent analysis of key plasma wall interactions issues for ITER, J. Nucl. Mater., 390–391, 1, 10.1016/j.jnucmat.2009.01.037
Brezinsek, 2017, Plasma-wall interaction studies within the EUROfusion consortium: Progress on plasma-facing components development and qualification, Nucl. Fusion., 57, 10.1088/1741-4326/aa796e
Hirai, 2013, ITER tungsten divertor design development and qualification program, 1798
Federici, 1999, In-vessel tritium retention and removal in ITER, J. Nucl. Mater., 266–269, 14, 10.1016/S0022-3115(98)00876-9
Loarer, 2009, Fuel retention in tokamaks, J. Nucl. Mater., 390–391, 20, 10.1016/j.jnucmat.2009.01.039
Heinola, 2016, 167
Li, 2016, Review of LIBS application in nuclear fusion technology, Front. Phys., 11, 10.1007/s11467-016-0606-1
Maurya, 2020, A review of the LIBS analysis for the plasma-facing components diagnostics, J. Nucl. Mater., 541, 10.1016/j.jnucmat.2020.152417
van der Meiden, 2021, Team, monitoring of tritium and impurities in the first wall of fusion devices using a LIBS based diagnostic, Nucl. Fusion., 61, 10.1088/1741-4326/ac31d6
Gąsior, 2020, 138
Almaviva, 2020, LIBS measurements inside the FTU vessel mock-up by using a robotic arm, Fusion Eng. Des., 157, 10.1016/j.fusengdes.2020.111685
Almaviva, 2021, LIBS measurements inside the FTU vacuum vessel by using a robotic arm, Fusion Eng. Des., 169, 10.1016/j.fusengdes.2021.112638
Gasior, 2011, Laser induced breakdown spectroscopy as diagnostics for fuel retention and removal and wall composition in fusion reactors with mixed-material components, Fusion Eng. Des., 86, 1239, 10.1016/j.fusengdes.2011.02.046
Philipps, 2013, Development of laser-based techniques for in situ characterization of the first wall in ITER and future fusion devices, Nucl. Fusion., 53, 10.1088/0029-5515/53/9/093002
Maddaluno, 2019, Detection by LIBS of the deuterium retained in the FTU toroidal limiter, Nucl. Mater. Energy., 18
Colao, 2016, LIBS experiments for quantitative detection of retained fuel, Nucl. Mater. Energy., 12, 133, 10.1016/j.nme.2017.05.010
Suchoňová, 2016, Determination of deuterium depth profiles in fusion-relevant wall materials by nanosecond LIBS, Nucl. Mater. Energy., 0, 1
Xiao, 2013, Application of laser-induced breakdown spectroscopy for characterization of material deposits and tritium retention in fusion devices, Fusion Eng. Des., 88, 1813, 10.1016/j.fusengdes.2013.05.083
Ciucci, 1999, New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy, Appl. Spectrosc., 53, 960, 10.1366/0003702991947612
Dwivedi, 2021, CF-LIBS quantification and depth profile analysis of be coating mixed layers, Nucl. Mater. Energy., 27
NIST LIBS Database, (n.d.). https://physics.nist.gov/PhysRefData/ASD/LIBS/libs-form.html (accessed December 3, 2021).
W.G. M. Kastek, P. Gąsior, SimulatedLIBS PyPI, (n.d.). doi:https://doi.org/10.5281/zenodo.6077131.
De Temmerman, 2021, Data on erosion and hydrogen fuel retention in beryllium plasma-facing materials, Nucl. Mater. Energy., 27
Zaloznik, 2022, Improved scaling law for the prediction of deuterium retention in beryllium co-deposits, Nucl. Fusion., 62, 10.1088/1741-4326/ac4775
Hakola, 2020, Effect of composition and surface characteristics on fuel retention in beryllium-containing co-deposited layers, Phys. Scr., 2020
Orange Data Mining - Data Mining, (n.d.). https://orangedatamining.com/ (accessed December 6, 2021).
Xu, 2020, Total alkali silica classification of rocks with LIBS: influences of the chemical and physical matrix effects, J. Anal. At. Spectrom., 35, 1641, 10.1039/D0JA00157K
Sun, 2021, From machine learning to transfer learning in laser-induced breakdown spectroscopy: the case of rock analysis for Mars exploration, Sci. Rep., 1
C. Sun, F. Chen, J. Yu, L. Gao, L. Zou, M. Wu, S. Shabbir, W. Xu, Y. Tan, Y. Zhang, Z. Yue, Machine learning efficiently corrects LIBS spectrum variation due to change of laser fluence, Opt. Express, 28, 10, 14345–14356. doi:https://doi.org/10.1364/OE.392176.