Analysis of field-driven clocking for molecular quantum-dot cellular automata based circuits

Faizal Karim1, Konrad Walus1, A. Ivanov1
1Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, Canada

Tóm tắt

Từ khóa


Tài liệu tham khảo

Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology 4, 49–57 (1993)

Lu, Y., Lent, C.S.: Theoretical study of molecular quantum-dot cellular automata. J. Comput. Electron. 4, 115–118 (2005)

Lent, C.S., Isaksen, B., Lieberman, M.: Molecular quantum-dot cellular automata. J. Am. Chem. Soc. 125, 1056–1063 (2003)

Jiao, J., Long, G.J., Grandjean, F., Beatty, A.M., Fehlner, T.P.: Building blocks for the molecular expression of quantum cellular automata. Isolation and characterization of a covalently bonded square array of two ferrocenium and two ferrocene complexes. J. Am. Chem. Soc. 125(25), 7522–7523 (2003)

Lent, C.S., Isaksen, B.: Clocked molecular quantum-dot cellular automata. IEEE Trans. Electron Devices 50(9), 1890–1896 (2003)

Jin, Z.: Fabrication and measurement of molecular quantum cellular automata (QCA) device. Master’s Thesis, University of Notre Dame, Notre Dame, IN 46556 (2006)

Li, Z., Fehlner, T.P.: Molecular QCA cells. 2. Characterization of an unsymmetrical dinuclear mixed-valence complex bound to a au surface by an organic linker. Inorg. Chem. 42(18), 5715–5721 (2003)

Li, Z., Beatty, A.M., Fehlner, T.P.: Molecular QCA cells. 1. Structure and functionalization of an unsymmetrical dinuclear mixed-valence complex for surface binding. Inorg. Chem. 42(18), 5707–5714 (2003)

Qi, H., Sharma, S., Li, Z., Snider, G.L., Orlov, A.O., Lent, C.S., Fehlner, T.P.: Molecular quantum cellular automata cells. Electric field driven switching of a silicon surface bound array of vertically oriented two-dot molecular quantum cellular automata. J. Am. Chem. Soc. 125(49), 15250–15259 (2003)

Macucci, M., Gattobigio, M., Bonci, L., Iannaccone, G., Prins, F.E., Single, C., Wetekam, G., Kern, D.P.: A QCA cell in silicon-on-insulator technology: theory and experiment. Superlattices Microstruct. 34(3), 205–211 (2004)

Orlov, A.O., Kummamuru, R.K., Ramasubramaniam, R., Lent, C.S., Berstein, G.H., Snider, G.L.: Clocked quantum-dot cellular automata shift register. Surf. Sci. 532–535, 1193–1198 (2003)

Amlani, I., Orlov, A.O., Toth, G., Bernstein, G.H., Lent, C.S., Snider, G.L.: Digital logic gate using quantum-dot cellular automata. Science 284, 289–291 (1999)

Amlani, I., Orlov, A.O., Snider, G.L., Lent, C.S.: Demonstration of a functional quantum-dot cellular automata cell. J. Vac. Sci. Technol. B 16, 3795–3799 (1998)

Lent, C.S., Snider, G.L., Bernstein, G.H., Porod, W., Orlov, A.O., Lieberman, M., Fehlner, T., Niemier, M.T., Kogge, P.: Quantum-Dot Cellular Automata. Kluwer Academic, Dordrecht (2003)

Snider, G.L., Amlani, I., Orlov, A.O., Toth, G., Bernstein, G., Lent, C.S., Merz, J.L., Porod, W.: Quantum-dot cellular automata: line and majority gate logic. Jpn. J. Appl. Phys. 38, 7227–7229 (1999)

Kummamuru, R.V., Timler, J., Toth, G., Lent, C.S., Ramasubramaniam, R., Orlov, A.O., Bernstein, G.H.: Power gain and dissipation in a quantum-dot cellular automata latch. Appl. Phys. Lett. 81, 1332–1334 (2002)

Toth, G., Lent, C.S.: Quasiadiabatic switching of metal-island quantum-dot cellular automata. J. Appl. Phys. 85(5), 2977–2984 (1999)

Imre, A., Csaba, G., Ji, L., Orlov, A.O., Bernstein, G.H., Porod, W.: Majority logic gate for magnetic quantum-dot cellular automata. Science 311(5758), 205–208 (2006)

György, C., et al.: Nanocomputing by field-coupled nanomagnets. IEEE Trans. Nanotechnol. 1(4), 209–213 (2002)

György, C., Porod, W.: Simulation of field coupled computing architectures based on magnetic dot arrays. J. Comput. Electron. 1(1), 87–91 (2002)

Parish, M.C.B.: Modeling of physical constraints on bistable magnetic quantum cellular automata. Ph.D. Thesis, University of London (2003)

Welland, M.E., Cowburn, R.P.: Room temperature magnetic quantum cellular automata. Science 287, 1466–1468 (2000)

Bernstein, G.H., Imre, A., Metlushko, V., Ji, L., Orlov, A.O., Csaba, G., Porod, W.: Magnetic QCA systems. Microelectron. J. 36, 619–624 (2005)

Haider, M., et al.: Controlled coupling and occupation of silicon atomic quantum dots at room temperature. Phys. Rev. Lett. 102, 046805 (2009)

Walus, K., Jullien, G.A.: Design tools for an emerging SoC technology: quantum-dot cellular automata. Proc. IEEE 94(6), 1225–1244 (2006)

Walus, K., Dysart, T., Jullien, G.A., Budiman, R.A.: QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3(1), 26–31 (2004)

Walus, K., Budiman, R.A., Jullien, G.A.: Split current quantum dot cellular automata—modeling and simulation. IEEE Trans. Nanotechnol. 3(2), 249–255 (2004)

Walus, K., Schulhof, G.: QCADesigner homepage. http://www.qcadesigner.ca/ (2001) (Online)

Walus, K., Mazur, M., Schulhof, G., Jullien, G.A.: Simple 4-bit processor based on quantum-dot cellular automata (QCA). In: Proc. of Application Specific Architectures, and Processors Conference, pp. 288–293, July 2005

Walus, K., Schulhof, G., Zhang, R., Wang, W., Jullien, G.A.: Circuit design based on majority gates for applications with quantum-dot cellular automata. In: Proc. of IEEE Asilomar Conference on Signals, Systems, and Computers, November 2004

Walus, K., Schulhof, G., Jullien, G.A.: High level exploration of quantum-dot cellular automata (QCA). In: Proc. of IEEE Asilomar Conference on Signals, Systems, and Computers, November 2004

Hennessy, K., Lent, C.S.: Clocking of molecular quantum-dot cellular automata. J. Vac. Sci. Technol. B 19(5), 1752–1755 (2001)

Blair, E.P., Lent, C.S.: An architecture for molecular computing using quantum-dot cellular automata. In: Proc. of the Third IEEE Conference on Nanotechnology, pp. 402–405 (2003)

Blair, E.P.: Tools for the design and simulation of clocked molecular quantum-dot cellular automata circuits. Master’s Thesis, University of Notre Dame, Notre Dame, IN 46556 (2003)

Data flow in molecular QCA: Logic can “sprint,” but the memory wall can still be a “hurdle” (2005)

Timler, J., Lent, C.S.: Power gain and dissipation in quantum-dot cellular automata. J. Appl. Phys. 91(2), 823–831 (2002)

Lent, C., Liu, M., Lu, Y.: Bennett clocking of quantum-dot cellular automata and the limits to binary logic scaling. Nanotechnology 17(16), 4240–4251 (2006)

Walus, K., Budiman, R.A., Jullien, G.A.: Impurity charging in semiconductor quantum-dot cellular automata. Nanotechnology 16(11), 2525–2529 (2005)

Walus, K.: Design and simulation of quantum-dot cellular automata devices and circuits. Ph.D. Thesis, University of Alberta, September 2005

Li, Z., Lieberman, M.: Axial reactivity of soluble silicon(IV) phthalo-cyanines. Inorg. Chem. 40, 932–939 (2001)

Demadis, K.D., Hartshorn, C.M., Meyer, T.J.: The localized-to-de-localized transition in mixed-valence chemistry. Chem. Rev. 101, 2655–2685 (2001)

Lu, Y., Liu, M., Lent, C.S.: Molecular electronics—from structure to dynamics. In Proc. of the Sixth IEEE Conference on Nanotechnolgy (2006)

Lu, Y., Liu, M., Lent, C.S.: Molecular quantum-dot cellular automata: from structure to dynamics. J. Appl. Phys. 102, 034311 (2007)

Lu, Y., Lent, C.: A metric for characterizing the bistability of molecular quantum-dot cellular automata. Nanotechnology 19, 155703 (2008)

Lent, C.S.: Re: QCA Related Questions. E-mail to K. Walus. 11 November 2008

Lent, C.S., Isaksen, B.: Clocked molecular quantum-dot cellular automata. IEEE Trans. Electron. Devices 50, 1890–1896 (2003)

Sadiku, M.: Elements of Electromagnetics, 3rd edn. Oxford University Press, London (1994)

Whites, K.W., Paul, C.R., Nasar, S.A.: Introduction to Electromagnetic Fields, 3rd edn. McGraw-Hill, Cambridge (1998)

Nojeh, A., Ural, A., Pease, R.F., Dai, H.: Electric-field-directed growth of carbon nanotubes in two dimensions. J. Vac. Sci. Technol. B 22(6), 3421–3425 (2004)

Visconti, P., Della Torre, A., Maruccio, G., D’Amone, E., Bramanti, A., Cingolani, R., Rinaldi, R.: The fabrication of sub-10 nm planar electrodes and their use for a molecule-based transistor. Nanotechnology 15, 807–811 (2004)

Liu, K., Avouris, Ph., Bucchignano, J., Martel, R., Sun, S., Michi, J.: Simple fabrication scheme for sub-10 nm electrode gaps using electron-beam lithography. Appl. Phys. Lett. 5(80), 865–867 (2002)

Macucci, M., Iannaccone, G., Francaviglia, S., Pellegrini, B.: Semiclassical simulation of quantum cellular automaton circuits. Int. J. Circuit Theory Appl. 29(1), 37–47 (2001)

Ungarelli, C., Francaviglia, S., Macucci, M., Iannaccone, G.: Thermal behavior of quantum cellular automaton wires. J. Appl. Phys. 87(10), 7320–7325 (2000)