Analysis of experimental spectra of phosphine in the Tetradecad range near 2.3 μm using ab initio calculations

A.V. Nikitin1, A. Campargue2, A.E. Protasevich1, M. Rey3, K. Sung4, Vl.G. Tyuterev1
1Laboratory of Theoretical Spectroscopy, V.E. Zuev Institute of Atmospheric Optics, SB RAS, 1, Academician Zuev square, 634021 Tomsk, Russia
2Univ. Grenoble Alpes, CNRS, LiPhy, 38000 Grenoble, France
3Groupe de Spectrométrie Moléculaire et Atmosphérique, UMR CNRS 7331, Université de Reims, U.F.R. Sciences, B.P. 1039, 51687 Reims Cedex 2, France
4Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA

Tài liệu tham khảo

Agundez, 2011, Confirmation of circumstellar phosphine, Astrophys. J. Lett., 790, L27, 10.1088/2041-8205/790/2/L27 Sousa-Silva, 2020, Phosphine as a biosignature gas in exoplanet atmospheres, Astrobiology, 20, 235, 10.1089/ast.2018.1954 Dransfield, 2020, Colour–magnitude diagrams of transiting exoplanets – III. A public code, nine strange planets, and the role of phosphine, NMRAS, 499, 505, 10.1093/mnras/staa2350 Greaves, 2021, Phosphine gas in the cloud decks of Venus, Nature Astron., 5, 655, 10.1038/s41550-020-1174-4 Greaves, 2021, Addendum: phosphine gas in the cloud deck of Venus, Nature Astron., 5, 726, 10.1038/s41550-021-01423-y Encrenaz, 2020, A stringent upper limit of the PH3 abundance at the cloud top of Venus, Astronomy Astrophys., 643, L5, 10.1051/0004-6361/202039559 Villanueva, 2021, No evidence of phosphine in the atmosphere of Venus from independent analyses, Nature Astron., 5, 631, 10.1038/s41550-021-01422-z Greaves, 2021, Reply to: No evidence of phosphine in the atmosphere of Venus from independent analyses, Nature Astron., 5, 636, 10.1038/s41550-021-01424-x Trompet, 2021, Phosphine in Venus’ atmosphere: detection attempts and upper limits above the cloud top assessed from the SOIR/VEx spectra, Astronomy Astrophys., 645, L4, 10.1051/0004-6361/202039932 Cordiner, 2022, Phosphine in the Venusian atmosphere: a strict upper limit from SOFIA GREAT observations, Geophys. Res. Lett., 49, 10.1029/2022GL101055 Lincowski, 2021, Claimed detection of PH3 in the clouds of venus is consistent with mesospheric SO2, Astrophys. J. Lett., 908, L44, 10.3847/2041-8213/abde47 Omran, 2021, Phosphine generation pathways on rocky planets, Astrobiology, 21, 1264, 10.1089/ast.2021.0034 Dévai, 1988, Detection of phosphine: new aspects of the phosphorus cycle in the hydrosphere, Nature, 333, 343, 10.1038/333343a0 Jenkins, 2000, Phosphine generation by mixed and monoseptic cultures of anaerobic bacteria, Sci. Total Environ., 250, 73, 10.1016/S0048-9697(00)00368-5 Cleland, 2022, Ammonia and phosphine in the clouds of Venus as potentially biological anomalies, Aerospace, 9, 752, 10.3390/aerospace9120752 Bains, 2021, Phosphine on Venus cannot be explained by conventional processes, Astrobiology, 21, 1277, 10.1089/ast.2020.2352 Truong, 2021, Volcanically extruded phosphides as an abiotic source of Venusian phosphine, Proc. Natl. Acad. Sci. USA, 118, 10.1073/pnas.2021689118 Bains, 2022, Only extraordinary volcanism can explain the presence of parts per billion phosphine on Venus, Proc. Natl. Acad. Sci. U. S. A., 119, 10.1073/pnas.2121702119 Bains, 2022, Venusian phosphine: a ‘wow!’ signal in chemistry?, Phosphorus Sulfur Silicon Related Elements, 197, 438, 10.1080/10426507.2021.1998051 Kunde, 1982, The tropospheric gas composition of Jupiter's north equatorial belt /NH3, PH3, CH3D, GeH4, H2O/ and the Jovian D/H isotopic ratio, Atrophys J, 263, 443, 10.1086/160516 Chedin, 1984, The impact of spectroscopic parameters on the composition of the jovian atmosphere discussed in connection with recent laboratory, earth and planetary observation programs, J. Quant. Spectrosc. Radiat. Transf., 32, 463, 10.1016/0022-4073(84)90040-2 Fletcher, 2009, Phosphine on Jupiter and Saturn from Cassini/CIRS, Icarus, 202, 543, 10.1016/j.icarus.2009.03.023 Drossart, 1990, Jupiter - Evidence for phosphine enhancement at high northern latitudes, Icarus, 83, 248, 10.1016/0019-1035(90)90018-5 Larson, 1980, The middle-infrared spectrum of Saturn: evidence for phosphine and upper limits to other trace atmospheric constituents, Astrophysical J., 240, 327, 10.1086/158236 Fletcher, 2011, Icarus, 214, 510, 10.1016/j.icarus.2011.06.006 Fegley, 1994, Chemical models of the deep atmospheres of Jupiter and Saturn, Icarus, 110, 117, 10.1006/icar.1994.1111 Snellen, 2014, Fast spin of the young extrasolar planet β Pictoris b, Nature, 509, 63, 10.1038/nature13253 de Regt, 2022, A quantitative assessment of the VO line list: Inaccuracies hamper high-resolution VO detections in exoplanet atmospheres, A&A, 661, A109, 10.1051/0004-6361/202142683 Rothman, 2013, The HITRAN2012 molecular spectroscopic database, J. Quant. Spectrosc. Radiat. Transf., 130, 4, 10.1016/j.jqsrt.2013.07.002 Gordon, 2017, The HITRAN2016 molecular spectroscopic database, J. Quant. Spectrosc. Radiat. Transf., 203, 3, 10.1016/j.jqsrt.2017.06.038 Delahaye, 2021, The 2020 edition of the GEISA spectroscopic database, J. Mol. Spectrosc., 380, 111510, 10.1016/j.jms.2021.111510 Albert, 2020, A decade with VAMDC: Results and ambitions, Atoms, 8,76, 1 Gordon, 2022, The HITRAN2020 molecular spectroscopic database, J. Quant. Spectrosc. Radiat. Transf., 277, 10.1016/j.jqsrt.2021.107949 Butler, 2006, The absorption spectrum of phosphine (PH3) between 2.8 and 3.7 lm: Line positions, intensities, and assignments, J. Molec Spectrosc., 238, 178, 10.1016/j.jms.2006.04.021 Ulenikov, 2004, High-resolution spectrum of the v1 + v4(E); v3 + v4(E); v3 + v4(A1), and v3 + v4(A2) bands of the PH3 molecule: assignments and preliminary analysis, J. Quant. Spectrosc. Radiat. Transf., 83, 599, 10.1016/S0022-4073(03)00107-9 Nikitin, 2009, Global modeling of the lower three polyads of PH3: preliminary results, J. Molec. Spectrosc., 256, 4, 10.1016/j.jms.2009.01.008 Malathy, 2014, Line positions and intensities of the phosphine (PH3) pentad near 4.5 μm, J. Molec. Spectrosc., 2014, 11, 10.1016/j.jms.2014.01.013 Ovsyannikov, 2008, Vibrational energies of PH3 calculated variationally at the complete basis set limit, J. Chem. Phys., 129, 10.1063/1.2956488 Nikitin, 2009, Vibration energy levels of the PH3, PH2D, and PHD2 molecules calculated from high order potential energy surface, J. Chem. Phys., 131 Nikitin, 2014, High order dipole moment surfaces of PH3 and ab initio intensity predictions in the Octad range, J. Molec. Spectrosc, 305, 40, 10.1016/j.jms.2014.09.010 Sousa-Silva, 2016, Communication: tunnelling splitting in the phosphine molecule, J. Chem. Phys., 145, 091102, 10.1063/1.4962259 He, 2001, The stretching vibrational overtone spectra of PH3: Local mode vibrational analysis, dipole moment surfaces from density functional theory and band intensities, J. Chem. Phys., 114, 7018, 10.1063/1.1352038 Yurchenko, 2006, Ab initio dipole moment and theoretical rovibrational intensities in the electronic ground state of PH3, J. Molec. Spectrosc., 239, 71, 10.1016/j.jms.2006.06.001 Sousa-Silva, 2013, A computed room temperature line list for phosphine, J. Molec. Spectrosc., 288, 28, 10.1016/j.jms.2013.04.002 Sousa-Silva, 2015, Exomol line lists - VII. the rotation-vibration spectrum of phosphine up to 1500 K, Monthly Notices R, Astron. Soc., 446, 2337, 10.1093/mnras/stu2246 Yurchenko, 2007, Theoretical rovibrational energies (trove): a robust numerical approach to the calculation of rovibrational energies for polyatomic molecules, J. Mol. Spectrosc., 245, 126, 10.1016/j.jms.2007.07.009 Rey, 2016, TheoReTS – an information system for theoretical spectra based on variational predictions from molecular potential energy and dipole moment surfaces, J. Molec. Spectrosc., 327, 138, 10.1016/j.jms.2016.04.006 Tyuterev, 2013, Accurate spectroscopic models for methane polyads derived from a potential energy surface using high-order contact transformations, J. Phys. Chem., 117, 13779, 10.1021/jp408116j Nikitin, 2017, Analysis of the absorption spectrum of 12CH4 in the region 5855–6250 cm−1 of the 2v3 band, J. Quant. Spectrosc. Radiat. Transf., 10.1016/j.jqsrt.2017.05.014 Tyuterev, 1980, Generalized contact transformations of a hamiltonian with a quasi-degenerate zero-order approximation. Application to accidental vibration- rotation resonances in molecules, Chem. Phys. Lett., 74, 494, 10.1016/0009-2614(80)85260-2 Tyuterev, 2004, High-order contact transformations: general algorithm, computer implementation, and triatomic tests, SPIE, 5311, 164 Tyuterev, 2022, High-order contact transformations of molecular Hamiltonians: general approach, fast computational algorithm and convergence of ro-vibrational polyad models, Molec Phys., 120, e2096140, 10.1080/00268976.2022.2096140 Rey, 2022, Novel methodology for systematically constructing global effective models from ab initio-based surfaces: a new insight into high-resolution molecular spectra analysis, J. Chem. Phys., 292 Champion, 1992 Zhilinskii, 1987 Rey, 2010, Ab initio ro-vibrational Hamiltonian in irreducible tensor formalism: a method for computing energy levels from potential energy surfaces for symmetric-top molecules, Molec Phys., 108, 2121, 10.1080/00268976.2010.506892 Rey, 2012, Complete nuclear motion Hamiltonian in the irreducible normal mode tensor operator formalism for the methane molecule, J. Chem. Phys., 136, 244106, 10.1063/1.4730030 Lodi, 2012, Line lists for H218O and H217O based on empirical line positions and ab initio intensities, J. Quant. Spectrosc. Radiat. Transf., 113, 850, 10.1016/j.jqsrt.2012.02.023 Tyuterev, 2017, Accurate ab initio dipole moment surfaces of ozone: first principle intensity predictions for rotationally resolved spectra in a large range of overtone and combination bands, J. Chem. Phys., 146, 10.1063/1.4973977 Nikitin, 2017, Accurate line intensities of methane from first-principles calculations, J. Quant. Spectrosc. Radiat. Transf., 200, 90, 10.1016/j.jqsrt.2017.05.023 Nikitin, 2012, Extension of the MIRS computer package for modeling of molecular spectra: from effective to full ab initio ro-vibrational hamiltonians in irreducible tensor form, J. Quant. Spectrosc. Radiat. Transf., 113, 1034, 10.1016/j.jqsrt.2012.01.027 Nikitin, 2017, Analysis of PH3 spectra in the Octad range 2733–3660 cm-1, J. Quant. Spectrosc. Radiat. Transf., 203, 472, 10.1016/j.jqsrt.2017.04.032 Maki, 1973, Infrared determination of Co for phosphine via perturbation-allowed Δ|K — l| = ±3 transitions in the 3v2 band, J. Chem. Phys., 58, 4502, 10.1063/1.1679013 Nikitin, 2011, Visualization and identification of spectra by the SpectraPlot, Visualization and identification of spectra by the SpectraPlot program, Atmos Ocean Opt, 24, 931 Bouanich, 2005, N2-broadening coefficients in the ν2 and ν4 bands of PH3, J. Mol. Spectrosc., 232, 40, 10.1016/j.jms.2005.02.005 Salem, 2004, Hydrogen line broadening in the v2 and v4 bands of phosphine at low temperature, J. Mol. Spectrosc., 228, 23, 10.1016/j.jms.2004.06.015 Sharpe, 2004, Gas-phase databases for quantitative infrared spectroscopy, Appl. Spectrosc., 58, 1452, 10.1366/0003702042641281 Johnson, 2004, The PNNL quantitative infrared database for gas-phase sensing: a spectral library for environmental, hazmat, and public safety standoff detection, Proc. SPIE-Int. Soc. Opt. Eng., 5269, 159 Pacific Nortwest National Laboratory (online). Available from: <http://www.pnnl.gov>.