Analysis of coastal changes using remote sensing and geographical information systems in the Gulf of Izmit, Turkey

Springer Science and Business Media LLC - Tập 192 - Trang 1-18 - 2020
Dilara Ciritci1, Tarık Türk1
1Department of Geomatics Engineering, Sivas Cumhuriyet University, Faculty of Engineering, Sivas, Turkey

Tóm tắt

The shoreline is constantly under the influence of physical elements, such as geomorphological events, earthquakes, and tectonic movements. In recent years, it has been changing due to the intensive use of coasts and the impact of human factors on coastal areas. This study’s aim was to analyze the coastal change in the Gulf of Izmit, Turkey, using satellite images from different dates. In this context, coastal changes were analyzed in a 95% confidence interval by the end point rate (EPR), linear regression rate (LRR), and weighted linear regression (WLR) statistical methods, after the automatic extraction of shorelines from Landsat satellite images of 17 periods belonging to different dates between 1975 and 2017 in four different scenarios. Furthermore, the effects of the destructive earthquake (Mw, 7.4), which caused the loss of many lives and property in the Gulf of Izmit on August 17, 1999, were also examined in detail.

Tài liệu tham khảo

Addo, K. A., Walkden, M., & Mills, J. P. (2008). Detection, measurement and prediction of shoreline recession in Accra, Ghana. ISPRS Journal of Photogrammetry & Remote Sensing, 63(5), 543–558. https://doi.org/10.1016/j.isprsjprs.2008.04.001. Alberti, A. P., Pires, A., & Freitas, L. ve Chaminé, H. (2013). Shoreline change mapping along the coast of Galicia, Spain. Proceedings of the Institution of Civil Engineers – Maritime Engineering, 166(3), 125–144. https://doi.org/10.1680/maen.2012.23. Altınok Y, Alpar B (2010) Marmara Tsunamileri, Olası Deniz içi Kaymaları ve Yerleşim Alanlarına Etkileri.İstanbul’un Jeolojii Sempozyumu III Bildiriler Kitabı. Arockiaraj, S., Kankara, R. S., Udhaba Dora, G., & Sathish, S. (2018). Estimation of seasonal morpho-sedimentary changes at headland bound and exposed beaches along South Maharashtra, west coast of India. Environmental Earth Sciences, 77(17), 604. https://doi.org/10.1007/s12665-018-7790-y. Ayoobi, I., & Tangestani, M. H. (2017). The effect of minimum noise fraction data input on success of artificial neural network in lithological mapping of a magmatic terrain with ASTER data; A case study from SE Iran. Remote Sensing Applications Society and Environment, 7, 21–26. https://doi.org/10.1016/j.rsase.2017.06.001. Beyazıt I (2014) Kızılırmak Deltasının Zamansal Kıyı Değişiminin Coğrafi Bilgi Sistemleri Ve Uzaktan Algılama Yöntemleri ile Belirlenmesi. Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi. Ceylan, M., (2012). Uzaktan Algılama ve CBS ile Kıyı Çizgisi Değişiminin Belirlenmesi; İzmit Körfezi Örneği. Hava Harp Okulu Havacılık ve Uzay Teknolojileri Enstitüsü, Yüksek Lisans Tezi. Ciritci, D., & Türk, T. (2019). Automatic detection of shoreline change by geographical information system (GIS) and remote sensing in the Göksu Delta, Turkey. Journal of the Indian Society of Remote Sensing, 47(2), 233–243. https://doi.org/10.1007/s12524-019-00947-1. Cırıtcı D (2020) Automatic determination of the coastal change in the Gulf of Izmit by geographical information systems and remote sensing methods. Sivas Cumhuriyet University, Master Thesis (in Turkish). Crowell, M., Douglas, B. C., & Leatherman, S. P. (1997). On forecasting future U.S. shoreline positions—A test of algorithms. Journal of Coastal Research, 13(4), 1245–1255. Demirtaş, R. (2000). 17 Ağustos 1999 İzmit Körfezi Depremi Raporu. Bayındırlık ve İskan Bakanlığı Afet İşleri Genel Müdürlüğü Deprem Araştırma Dairesi Başkanlığı. Doğan News Agency (2019) http://haberciniz.biz/depremin-merkez-ussu-golcuke-15-yil-sonra-yeni-lunapark-3113580h.htm. Dolan, R., Fenster, M. S., & Holme, S. J. (1991). Temporal analysis of shoreline recession and accretion. Journal of Coastal Research, 7(3), 723–744 https://www.jstor.org/stable/4297888. Fereydooni, H., & Mojeddifar, S. (2017). A directed matched filtering algorithm (DMF) for discriminating hydrothermal alteration zones using the ASTER remote sensing data. International Journal of Applied Earth Observation and Geoinformation, 61, 1–13. https://doi.org/10.1016/j.jag.2017.04.010. Ferreira, M. P., Wagner, F. H., Aragao, L. E. O. C., Shimabukuro, Y. E., & Souza Filho, C. R. (2019). Tree species classification in tropical forests using visible to shortwave infrared WorldView-3 images and texture analysis. ISPRS Journal of Photogrammetry and Remote Sensing, 149, 119–131. https://doi.org/10.1016/j.isprsjprs.2019.01.019. Genz, A. S., Fletcher, C. H., Dunn, R. A., Frazer, L. N., & Rooney, J. J. (2007). The predictive accuracy of shoreline change rate methods and alongshore beach variation on Maui, Hawaii. Journal of Coastal Research, 23(1), 87–105. https://doi.org/10.2112/05-0521.1. Gibeaut, J. C., Hepner, T., Waldinger, R., Andrews, J., Gutierrez, R., Tremblay, T. A., Smyth, R., ve Xu, L. (2001). Changes in Gulf shoreline position, Mustang, and North Padre Islands, Texas. A Report of the Texas Coastal Coordination Council Pursuant to National Oceanic and Atmospheric Administration Award No. NA97OZ0179, GLO Contract Number 00-002R. The University of Texas at Austin, Austin, Texas, USA. Göney, S. (1963). İzmit Körfezi Kuzey Kıyılarının Jeomorfolojisi. Türk Coğrafya Dergisi, 22, 187–204. Güneroğlu, A. (2015). Coastal changes and land use alteration on northeastern part of Turkey. Ocean & Coastal Management, 118, 225–233. https://doi.org/10.1016/j.ocecoaman.2015.06.019. Himmelstoss EA, Farris AS, Henderson RE, Kratzmann MG, Ergul, Ayhan, Zhang, Ouya, Zichichi JL, Thieler ER (2018) Digital Shoreline Analysis System (version 5.0): U.S. Geological Survey software. https://code.usgs.gov/cch/dsas/ . Hoşgören, M. Y. (1995). İzmit Körfezi Havzasının Jeomorfolojisi, İzmit Körfezi Kuvaterner İstifi. Editör, Meriç, E, 343–348. Kahya, O., (2005). Landsat Etm Verisi Kullanılarak Arazi Örtüsünün Expert Sistem Yöntemiyle Sınıflandırılması. Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi. Kalkan, K., Maktav, D., Mercan O.Y., (2010). Kıyı Çizgisinin Otomatik Olarak Belirlenmesi ve Coğrafi Bilgi Sistemleri ile Entegrasyonu (Matlab Uygulaması). III. Uzaktan Algılama ve Coğrafi Bilgi Sistemleri Sempozyumu, 11–13 Ekim. Kuleli, T., Güneroğlu, A., Karslı, F., & Dihkan, M. (2011). Automatic detection of shoreline change on coastal Ramsar wetlands of Turkey. Ocean Engineering, 38(10), 1141–1149. https://doi.org/10.1016/j.oceaneng.2011.05.006. Lixin, G., Weixin, X., & Jihong, P. (2015). Segmented minimum noise fraction transformation for efficient feature extraction of hyperspectral images. Pattern Recognition, 48, 3216–3226. https://doi.org/10.1016/j.patcog.2015.04.013. Maiti, S., & Bhattacharya, A. (2009). Shoreline change analysis and its application to prediction: A remote sensing and statistics based approach. Marine Geology, 257, 11–23. https://doi.org/10.1016/j.margeo.2008.10.006. Mukhopadhyay, A., Mukherjee, S., Mukherjee, S., Ghosh, S., Hazra, S., & Mitra, D. (2012). Automatic shoreline detection and future prediction: A case study on Puri Coast, Bay of Bengal, India. European Journal of Remote Sensing, 45(1), 201–213. https://doi.org/10.5721/EuJRS20124519. Nassar, K., Mahmod, W. E., Fath, H., Masria, A., Nadaoka, K., & Negm, A. (2019). Shoreline change detection using DSAS technique: Case of North Sinai coast, Egypt. Marine Georesources & Geotechnology, 37(1), 81–95. https://doi.org/10.1080/1064119X.2018.1448912. Oyedotun TDT (2014) Shoreline geometry: DSAS as a tool for historical trend analysis. Geomorphological Techniques. Özmen B (2000) 17 Ağustos 1999 İzmit Körfezi Depremi’nin Hasar Durumu (Rakamsal Verilerle). TURKISH EARTHQUAKE FOUNDATION. Sheik, M., & Chandrasekar. (2011). A shoreline change analysis along the coast between Kanyakumari and Tuticorin, India, using digital shoreline analysis system. Geo-spatial Information Science, 14(4), 282–293. https://doi.org/10.1007/s11806-011-0551-7. Tağıl, Ş., & Cürebal, İ. (2005). Altınova (Balıkesir) Sahilinde Kıyı Çizgisi Değişimini Belirlemede Uzaktan Algılama ve Coğrafi Bilgi Sistemleri. Fırat Üniv. Sosyal Bilimler Dergisi, 15(2), 51–68 https://hdl.handle.net/20.500.12462/5201. Thang, N. T. X., Thu, T. V., ve Woodroffe, C. D., (2017) Coastal erosion vulnerability of Kien Giang - the Western Mekong River Delta Coast in Vietnam. International Conference on Globalisation, Climate Change and Sustainable Development, 26–28 April, Hatinh University. Uzun, M., ve Garipağaoğlu N. (2014) Kıyı Çizgisi Değişimin Yaratacağı Riskler Açısından İzmit Körfezi Kıyılarının Değerlendirilmesi. Uluslararası Sosyal Araştırmalar Dergisi, 7 (31), 469–480. Uzun, M. (2014). Hersek Deltasında (Yalova) Kıyı Çizgisi-Kıyı Alanı Değişimleri Ve Etkileri. Doğu Coğrafya Dergisi, 19(32), 24–48. https://doi.org/10.17295/dcd.781. Uzun, M. (2015). İzmit Körfezi Kıyılarında, Kıyı Jeomorfolojisi-Kıyı Kullanımı İlişkisinin Coğrafi Analizi. Zeitschrift für die Welt der Türken / Journal of World of Turks, 7(2), 351–375. Vatan Newspaper, (2015). http://www.gazetevatan.com/yikintidan-filizlendi%2D%2D854757-yasam/. Yunus Ali, P., & ve Narayana, A. C. (2015). Short-term morphological and shoreline changes at Trinkat Island, Andaman and Nicobar, India, after the 2004 tsunami. Marine Geodesy, 38(1), 26–39. https://doi.org/10.1080/01490419.2014.908795.