Analysis of baroclinic vertical structures around the Korean marginal seas with a primary focus on the model configuration
Tài liệu tham khảo
An, 1993, Numerical experiment for the formation of the Yellow Sea cold water mass, J. Kor. Soc. Oceanogr., 28, 101
Chassignet, 2017, Impact of horizontal resolution (1/12 to 1/50) on Gulf Stream separation, penetration, and variability, J. Phys. Oceanogr., 47, 1999, 10.1175/JPO-D-17-0031.1
Chelton, 1998, Geographical variability of the first baroclinic Rossby radius of deformation, J. Phys. Oceanogr., 28, 433, 10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2
Cho, 2000, Branching mechanism of the Tsushima current in the Korea Strait, J. Phys. Oceanogr., 30, 2788, 10.1175/1520-0485(2000)030<2788:BMOTTC>2.0.CO;2
Chongguang, 2005, Seasonal evolution of circulation and thermal structure in the Yellow Sea, Chin. J. Oceanol. Limnol., 23, 269, 10.1007/BF02847148
Ferrari, 2010, A boundary-value problem for the parameterized mesoscale eddy transport, Ocean Model., 32, 143, 10.1016/j.ocemod.2010.01.004
Ge, 2017, Importance of the vertical resolution in simulating SST diurnal and intraseasonal variability in an oceanic general circulation model, J. Clim., 30, 3963, 10.1175/JCLI-D-16-0689.1
Griffies, 2013, Ocean circulation models and modelling, vol. 103, 521
Hallberg, 2013, Using a resolution function to regulate parameterizations of oceanic mesoscale eddy effects, Ocean Model., 72, 92, 10.1016/j.ocemod.2013.08.007
Hallberg, 1996, Buoyancy-driven circulation in an ocean basin with isopycnals intersecting the sloping boundary, J. Phys. Oceanogr., 26, 913, 10.1175/1520-0485(1996)026<0913:BDCIAO>2.0.CO;2
Hase, 1999, The current structure of the Tsushima warm current along the Japanese coast, J. Oceanogr., 55, 217, 10.1023/A:1007894030095
Hewitt, 2017, Will high-resolution global ocean models benefit coupled predictions on short-range to climate timescales?, Ocean Model., 120, 120, 10.1016/j.ocemod.2017.11.002
Hirose, 1999, Surface heat flux in the east China Sea and the Yellow Sea, J. Phys. Oceanogr., 29, 401, 10.1175/1520-0485(1999)029<0401:SHFITE>2.0.CO;2
Hunt, 2012, The vertical structure of oceanic Rossby waves: a comparison of high-resolution model data to theoretical vertical structures, Ocean Sci., 8, 19, 10.5194/os-8-19-2012
2010, 196
Kawabe, 1982, Branching of the Tsushima current in the Japan sea, J. Oceanogr., 38, 95
Kim, 2001, Warming and structural changes in the east (Japan) sea: a clue to future changes in global oceans?, Geophys. Res. Lett., 28, 3293, 10.1029/2001GL013078
Kim, 2009, Comparison between a reanalyzed product by 3-dimensional variational assimilation technique and observations in the Ulleung Basin of the East/Japan Sea, J. Mar. Syst., 78, 249, 10.1016/j.jmarsys.2009.02.017
Koldunov, 2019, Scalability and some optimization of the finite-volumE sea ice-ocean model, version 2.0 (FESOM2), Geosci. Model Dev., 12, 3991, 10.5194/gmd-12-3991-2019
Kwak, 2013, Sensitivity of simulated water temperature to vertical mixing scheme and water turbidity in the Yellow Sea, J. Kor. Soc. Oceanogr., 18, 111
Lee, 2003, Comparison of RIAMOM and MOM in modeling the east sea/Japan sea circulation, Ocean Polar Res., 25, 287, 10.4217/OPR.2003.25.3.287
Lee, 2012, The PAMS study, Prog. Oceanogr., 105, 1, 10.1016/j.pocean.2012.04.002
Lie, 2001, Does the Yellow Sea Warm Current really exist as a persistent mean flow?, J. Geophys. Res., 106, 22199, 10.1029/2000JC000629
Moon, 2009, Comparison of wind and tidal contributions to seasonal circulation of the Yellow Sea, J. Geophys. Res. Oceans, 114, 10.1029/2009JC005314
Morey, 2003, Impacts of vertical resolution on a numerical model of the Gulf of Mexico. Oceans Extended Abstract, vol. 1, 435
Park, 2013, An oceanic current map of the East Sea for science textbooks based on scientific knowledge acquired from oceanic measurements, J. Kor. Soc. Oceanogr., 18, 234
Qiao, 2004, Simulation of the temperature and salinity along 36°N in the Yellow Sea with a wave-current coupled model, J. Kor. Soc. Oceanogr., 39, 35
Sein, 2018, The relative influence of atmospheric and oceanic model resolution on the circulation of the North Atlantic Ocean in a coupled climate model, J. Adv. Model. Earth Syst., 10, 2026, 10.1029/2018MS001327
Soufflet, 2016, On effective resolution in ocean models, Ocean Model., 98, 36, 10.1016/j.ocemod.2015.12.004
Stewart, 2017, Vertical resolution of baroclinic modes in global ocean models, Ocean Model., 113, 50, 10.1016/j.ocemod.2017.03.012
Tailleux, 2003, Comments on “the effect of bottom topography on the speed of long extratropical planetary waves”, J. Phys. Oceanogr., 33, 1536, 10.1175/1520-0485(2003)033<1536:COTEOB>2.0.CO;2
Thran, 2018, Controls on the global distribution of contourite drifts: insights from an eddy‐resolving ocean model, Earth Planet Sci. Lett., 489, 228, 10.1016/j.epsl.2018.02.044
Uda, 1934, Hydrographical researches on the normal monthly conditions in the Japan sea, the Yellow Sea and the Okhotsk sea, J. Imp. Fish. Exp. Sta., 5, 191
Weaver, 1990, On the importance of vertical resolution in certain ocean general circulation models, J. Phys. Oceanogr., 20, 600, 10.1175/1520-0485(1990)020<0600:OTIOVR>2.0.CO;2
Xia, 2006, Three‐dimensional structure of the summertime circulation in the Yellow Sea from a wave‐tide‐circulation coupled model, J. Geophys. Res. Oceans, 111, 10.1029/2005JC003218
Xu, 2003, The baroclinic circulation structure of Yellow Sea cold water mass, Sci. China, Ser. D, 46, 117, 10.1360/03yd9011
Yu, 2012, A quasi-global 1/10 eddy-resolving ocean general circulation model and its preliminary results, Chin. Sci. Bull., 57, 3908, 10.1007/s11434-012-5234-8
Zhang, 2008, Observation of the seasonal evolution of the Yellow Sea cold water mass in 1996-1998, Continent. Shelf Res., 28, 442, 10.1016/j.csr.2007.10.002
Zhu, 2018, Air-sea heat flux control on the Yellow Sea Cold Water Mass intensity and implications for its prediction, Continent. Shelf Res., 152, 14, 10.1016/j.csr.2017.10.006