Analysis of anisotropic Mindlin plate model by continuous and non-continuous GFEM

Finite Elements in Analysis and Design - Tập 47 - Trang 698-717 - 2011
Paulo de Tarso R. Mendonça1, Clovis S. de Barcellos1, Diego Amadeu F. Torres1
1Group of Mechanical Analysis and Design - GRANTE, Department of Mechanical Engineering, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil

Tài liệu tham khảo

Dolbow, 2000, Modeling fracture in Mindlin–Reissner plates with the extended finite element method, Int. J. Solids Struct., 37, 7161, 10.1016/S0020-7683(00)00194-3 Bathe, 1996 Veubeke, 1968, An equilibrium model for plate bending, Int. J. Solids Struct., 4, 447, 10.1016/0020-7683(68)90049-8 Lee, 1982, Mixed formulation finite elements for Mindlin plate bending, Int. J. Numer. Methods Eng., 18, 1297, 10.1002/nme.1620180903 Hughes, 1981, Finite Elements based upon Mindlin plate theory with particular reference to the four-node isoparametric element, J. Appl. Mech. Trans. ASME, 48, 587, 10.1115/1.3157679 Bletzinger, 2000, A unified approach for shear-locking-free triangular and rectangular shell finite elements, Comput. Struct., 75, 321, 10.1016/S0045-7949(99)00140-6 Liu, 2007, A smoothed finite element for mechanics problems, Comput. Mech., 39, 859, 10.1007/s00466-006-0075-4 Nguyen-Xuan, 2008, A smoothed finite element method for plate analysis, Comput. Methods Appl. Mech. Eng., 197, 1184, 10.1016/j.cma.2007.10.008 Garcia, 2000, hp-Clouds in Mindlin's thick plate model, Int. J Numer. Methods Eng., 47, 1381, 10.1002/(SICI)1097-0207(20000320)47:8<1381::AID-NME833>3.0.CO;2-9 Krysl, 1995, Analysis of thin plates by the element-free-Galerkin method, Comput. Mech., 16, 1 Li, 2005, A locking-free meshless local Petrov–Galerkin formulation for thin and thick plates, J. Comput. Phys., 208, 116, 10.1016/j.jcp.2005.02.008 Soric, 2004, The meshless local Petrov–Galerkin (MLPG) formulation for analysis of thick plates, Comput. Model. Eng. Sci., 6, 349 Wang, 2006, Extended meshfree analysis of transverse and inplane loading of a laminated anisotropic plate of general planform geometry, Int. J. Solids Struct., 43, 144, 10.1016/j.ijsolstr.2005.03.068 Dinis, 2008, Analysis of plates and laminates using natural radial point interpolation method, Eng. Anal. Boundary Elem., 32, 267, 10.1016/j.enganabound.2007.08.006 Gingold, 1982, Kernel estimates as a basis for general particle methods in hydrodynamics, J. Comput. Phys., 46, 429, 10.1016/0021-9991(82)90025-0 Nayroles, 1992, Generalizing the finite element method: diffuse approximation and diffuse elements, Comput. Mech., 10, 307, 10.1007/BF00364252 Amarantuga, 1994, Wavelet-Galerkin solutions for one-dimensional partial differential equations, Int. J. Numer. Methods Eng., 37, 2703, 10.1002/nme.1620371602 Belytschko, 1993, Crack propagation by element free Galerkin methods, 191 Liu, 1995, Reproducing kernel particle methods, Int. J. Numer. Methods Fluids, 20, 1081, 10.1002/fld.1650200824 Atluri, 1998, New meshless local Petrov–Galerkin (MPLG) approach in computational mechanics, Comput. Mech., 22, 117, 10.1007/s004660050346 Sukumar, 1998, The natural element method, Int. J. Numer. Methods Eng., 43, 839, 10.1002/(SICI)1097-0207(19981115)43:5<839::AID-NME423>3.0.CO;2-R I. Babuška, J.M. Melenk, The partition of unity method, Technical Note BN-1185, Institute for Physical Science and Technology, University of Maryland, 1995. C.A. Duarte, J.T. Oden, hp Clouds—a meshless method to solve boundary value problems, TICAM Report 95-05, University of Texas, 1995. Duarte, 1996, hp Clouds—an hp meshless method, Numer. Methods Partial Differential Equations, 12, 673, 10.1002/(SICI)1098-2426(199611)12:6<673::AID-NUM3>3.0.CO;2-P Nicolazzi, 1997, hp-Clouds—a meshless method in boundary elements. Part II: implementation, Int. J. Boundary Elem. Method Commun., 8, 83 Oden, 1998, A new cloud-based hp finite element method, Comput. Methods Appl. Mech. Eng., 153, 117, 10.1016/S0045-7825(97)00039-X J.M. Melenk, On generalized finite element methods, Ph.D. Dissertation, University of Maryland, 1995. Babuška, 1996, The partition of unity finite element method: basic theory and applications, Comput. Methods Appl. Mech. Eng., 139, 289, 10.1016/S0045-7825(96)01087-0 Belytschko, 1999, Elastic crack growth in finite elements with minimal remeshing, Int. J. Numer. Methods Eng., 45, 601, 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S Moës, 1999, Elastic crack growth in finite elements without remeshing, Int. J. Numer. Methods Eng., 46, 131, 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J Belytschko, 2009, A review for extended/generalized finite element methods for material modeling, Modelling Simul. Mater. Sci. Eng., 17, 23, 10.1088/0965-0393/17/4/043001 Strouboulis, 2001, The generalized finite element method, Comput. Methods Appl. Mech. Eng., 190, 4081, 10.1016/S0045-7825(01)00188-8 Strouboulis, 2003, Generalized finite element method using mesh-based handbooks: applications to problems in domains with many voids, Comput. Methods Appl. Mech. Eng., 192, 3109, 10.1016/S0045-7825(03)00347-5 Duarte, 2002, Mesh-independent p-orthotropic enrichment using the generalized finite element method, Int. J. Numer. Methods Eng., 55, 1477, 10.1002/nme.557 Barros, 2004, On error estimator and p-adaptivity in the generalized finite element method, Int. J. Numer. Methods Eng., 60, 2373, 10.1002/nme.1048 Barros, 2007, p-Adaptive Ck generalized finite element method for arbitrary polygonal clouds, Comput. Mech., 41, 175, 10.1007/s00466-007-0177-7 Simone, 2006, A generalized finite element method for polycrystals with discontinuous grain boundaries, Int. J. Numer. Methods Eng., 67, 1122, 10.1002/nme.1658 Garcia, 2009, Developments in the application of the generalized finite element method to thick shell problems, Comput. Mech., 44, 669, 10.1007/s00466-009-0396-1 de Barcellos, 2009, A Ck continuous generalized finite element formulation applied to laminated Kirchhoff plate model, Comput. Mech., 44, 377, 10.1007/s00466-009-0376-5 Torres, 2011, Evaluation and verification of an HSDT-layerwise generalized finite element formulation for adaptive piezoelectric laminated plates, Comput. Methods Appl. Mech. Eng., 200, 675, 10.1016/j.cma.2010.09.014 Duarte, 2001, A generalized finite element method for the simulation of three-dimensional dynamic crack propagation, Comput. Methods Appl. Mech. Eng., 190, 2227, 10.1016/S0045-7825(00)00233-4 H.C. Edwards, C∞ finite element basis functions. Technical Report, TICAM Report 96-45, The University of Texas at Austin, 1996. H.C. Edwards, A Parallel infrastructure for scalable adaptive finite element methods and its application hp least squares C∞ collocation, Ph.D. Dissertation, The University of Texas at Austin, 1997. Duarte, 2006, Arbitrarily smooth generalized element approximations, Comput. Methods Appl. Mech. Eng., 196, 33, 10.1016/j.cma.2005.12.016 Rvachev, 1995, R-functions in boundary value problems in mechanics, Appl. Mech. Rev., 48, 151, 10.1115/1.3005099 V. Shapiro, Theory of R-functions and applications: a primer, Technical Report TR91-1219, Computer Science Department, Cornell University, Ithaca, NY, 1991. Actis, 1999, Hierarchic models for laminated plates and shells, Comput. Methods Appl. Mech. Eng., 172, 79, 10.1016/S0045-7825(98)00226-6 Babuska, 1987, The optimal convergence rate of the p version of the finite element method, SIAM J. Numer. Anal., 24, 750, 10.1137/0724049 Babuska, 2009, Effect of numerical integration on meshless methods, Comput. Methods Appl. Mech. Eng., 198, 2886, 10.1016/j.cma.2009.04.008 Shepard, 1968, A two-dimensional function for irregularly spaced data, 517 Belytschko, 1998, On adaptivity and error criteria for mesh free methods, 217 Duarte, 2000, Generalized finite element method for three-dimensional structural mechanics problems, Comput. Struct., 77, 215, 10.1016/S0045-7949(99)00211-4 Mindlin, 1951, Influence of rotary inertia and shear on flexural motion of isotropic elastic plates, J. Appl. Mech., 18, 336, 10.1115/1.4010217 Reddy, 1997 Dobyns, 1981, The analysis of simply-supported orthotropic plates subjected to static and dynamic loads, Am. Inst. Aeronaut. Astronaut. J., 19, 642, 10.2514/3.50984 Reddy, 1984, A simple higher-order theory for laminated composite plates, J. Appl. Mech., 51, 745, 10.1115/1.3167719 Pagano, 1970, Exact solutions for rectangular bidirectional composites and sandwich plates, J. Comput. Mater., 4, 20, 10.1177/002199837000400102 Dunavant, 1985, High degree efficient symmetrical Gaussian quadrature rules for the triangle, Int. J. Numer. Methods Eng., 21, 1129, 10.1002/nme.1620210612 Wandzura, 2003, Symmetric quadrature rules on a triangle, Comput. Math. Appl., 45, 1829, 10.1016/S0898-1221(03)90004-6 Strouboulis, 2000, The design and analysis of the generalized finite element method, Comput. Methods Appl. Mech. Eng., 181, 43, 10.1016/S0045-7825(99)00072-9