Analysis of anisotropic Mindlin plate model by continuous and non-continuous GFEM
Tài liệu tham khảo
Dolbow, 2000, Modeling fracture in Mindlin–Reissner plates with the extended finite element method, Int. J. Solids Struct., 37, 7161, 10.1016/S0020-7683(00)00194-3
Bathe, 1996
Veubeke, 1968, An equilibrium model for plate bending, Int. J. Solids Struct., 4, 447, 10.1016/0020-7683(68)90049-8
Lee, 1982, Mixed formulation finite elements for Mindlin plate bending, Int. J. Numer. Methods Eng., 18, 1297, 10.1002/nme.1620180903
Hughes, 1981, Finite Elements based upon Mindlin plate theory with particular reference to the four-node isoparametric element, J. Appl. Mech. Trans. ASME, 48, 587, 10.1115/1.3157679
Bletzinger, 2000, A unified approach for shear-locking-free triangular and rectangular shell finite elements, Comput. Struct., 75, 321, 10.1016/S0045-7949(99)00140-6
Liu, 2007, A smoothed finite element for mechanics problems, Comput. Mech., 39, 859, 10.1007/s00466-006-0075-4
Nguyen-Xuan, 2008, A smoothed finite element method for plate analysis, Comput. Methods Appl. Mech. Eng., 197, 1184, 10.1016/j.cma.2007.10.008
Garcia, 2000, hp-Clouds in Mindlin's thick plate model, Int. J Numer. Methods Eng., 47, 1381, 10.1002/(SICI)1097-0207(20000320)47:8<1381::AID-NME833>3.0.CO;2-9
Krysl, 1995, Analysis of thin plates by the element-free-Galerkin method, Comput. Mech., 16, 1
Li, 2005, A locking-free meshless local Petrov–Galerkin formulation for thin and thick plates, J. Comput. Phys., 208, 116, 10.1016/j.jcp.2005.02.008
Soric, 2004, The meshless local Petrov–Galerkin (MLPG) formulation for analysis of thick plates, Comput. Model. Eng. Sci., 6, 349
Wang, 2006, Extended meshfree analysis of transverse and inplane loading of a laminated anisotropic plate of general planform geometry, Int. J. Solids Struct., 43, 144, 10.1016/j.ijsolstr.2005.03.068
Dinis, 2008, Analysis of plates and laminates using natural radial point interpolation method, Eng. Anal. Boundary Elem., 32, 267, 10.1016/j.enganabound.2007.08.006
Gingold, 1982, Kernel estimates as a basis for general particle methods in hydrodynamics, J. Comput. Phys., 46, 429, 10.1016/0021-9991(82)90025-0
Nayroles, 1992, Generalizing the finite element method: diffuse approximation and diffuse elements, Comput. Mech., 10, 307, 10.1007/BF00364252
Amarantuga, 1994, Wavelet-Galerkin solutions for one-dimensional partial differential equations, Int. J. Numer. Methods Eng., 37, 2703, 10.1002/nme.1620371602
Belytschko, 1993, Crack propagation by element free Galerkin methods, 191
Liu, 1995, Reproducing kernel particle methods, Int. J. Numer. Methods Fluids, 20, 1081, 10.1002/fld.1650200824
Atluri, 1998, New meshless local Petrov–Galerkin (MPLG) approach in computational mechanics, Comput. Mech., 22, 117, 10.1007/s004660050346
Sukumar, 1998, The natural element method, Int. J. Numer. Methods Eng., 43, 839, 10.1002/(SICI)1097-0207(19981115)43:5<839::AID-NME423>3.0.CO;2-R
I. Babuška, J.M. Melenk, The partition of unity method, Technical Note BN-1185, Institute for Physical Science and Technology, University of Maryland, 1995.
C.A. Duarte, J.T. Oden, hp Clouds—a meshless method to solve boundary value problems, TICAM Report 95-05, University of Texas, 1995.
Duarte, 1996, hp Clouds—an hp meshless method, Numer. Methods Partial Differential Equations, 12, 673, 10.1002/(SICI)1098-2426(199611)12:6<673::AID-NUM3>3.0.CO;2-P
Nicolazzi, 1997, hp-Clouds—a meshless method in boundary elements. Part II: implementation, Int. J. Boundary Elem. Method Commun., 8, 83
Oden, 1998, A new cloud-based hp finite element method, Comput. Methods Appl. Mech. Eng., 153, 117, 10.1016/S0045-7825(97)00039-X
J.M. Melenk, On generalized finite element methods, Ph.D. Dissertation, University of Maryland, 1995.
Babuška, 1996, The partition of unity finite element method: basic theory and applications, Comput. Methods Appl. Mech. Eng., 139, 289, 10.1016/S0045-7825(96)01087-0
Belytschko, 1999, Elastic crack growth in finite elements with minimal remeshing, Int. J. Numer. Methods Eng., 45, 601, 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
Moës, 1999, Elastic crack growth in finite elements without remeshing, Int. J. Numer. Methods Eng., 46, 131, 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
Belytschko, 2009, A review for extended/generalized finite element methods for material modeling, Modelling Simul. Mater. Sci. Eng., 17, 23, 10.1088/0965-0393/17/4/043001
Strouboulis, 2001, The generalized finite element method, Comput. Methods Appl. Mech. Eng., 190, 4081, 10.1016/S0045-7825(01)00188-8
Strouboulis, 2003, Generalized finite element method using mesh-based handbooks: applications to problems in domains with many voids, Comput. Methods Appl. Mech. Eng., 192, 3109, 10.1016/S0045-7825(03)00347-5
Duarte, 2002, Mesh-independent p-orthotropic enrichment using the generalized finite element method, Int. J. Numer. Methods Eng., 55, 1477, 10.1002/nme.557
Barros, 2004, On error estimator and p-adaptivity in the generalized finite element method, Int. J. Numer. Methods Eng., 60, 2373, 10.1002/nme.1048
Barros, 2007, p-Adaptive Ck generalized finite element method for arbitrary polygonal clouds, Comput. Mech., 41, 175, 10.1007/s00466-007-0177-7
Simone, 2006, A generalized finite element method for polycrystals with discontinuous grain boundaries, Int. J. Numer. Methods Eng., 67, 1122, 10.1002/nme.1658
Garcia, 2009, Developments in the application of the generalized finite element method to thick shell problems, Comput. Mech., 44, 669, 10.1007/s00466-009-0396-1
de Barcellos, 2009, A Ck continuous generalized finite element formulation applied to laminated Kirchhoff plate model, Comput. Mech., 44, 377, 10.1007/s00466-009-0376-5
Torres, 2011, Evaluation and verification of an HSDT-layerwise generalized finite element formulation for adaptive piezoelectric laminated plates, Comput. Methods Appl. Mech. Eng., 200, 675, 10.1016/j.cma.2010.09.014
Duarte, 2001, A generalized finite element method for the simulation of three-dimensional dynamic crack propagation, Comput. Methods Appl. Mech. Eng., 190, 2227, 10.1016/S0045-7825(00)00233-4
H.C. Edwards, C∞ finite element basis functions. Technical Report, TICAM Report 96-45, The University of Texas at Austin, 1996.
H.C. Edwards, A Parallel infrastructure for scalable adaptive finite element methods and its application hp least squares C∞ collocation, Ph.D. Dissertation, The University of Texas at Austin, 1997.
Duarte, 2006, Arbitrarily smooth generalized element approximations, Comput. Methods Appl. Mech. Eng., 196, 33, 10.1016/j.cma.2005.12.016
Rvachev, 1995, R-functions in boundary value problems in mechanics, Appl. Mech. Rev., 48, 151, 10.1115/1.3005099
V. Shapiro, Theory of R-functions and applications: a primer, Technical Report TR91-1219, Computer Science Department, Cornell University, Ithaca, NY, 1991.
Actis, 1999, Hierarchic models for laminated plates and shells, Comput. Methods Appl. Mech. Eng., 172, 79, 10.1016/S0045-7825(98)00226-6
Babuska, 1987, The optimal convergence rate of the p version of the finite element method, SIAM J. Numer. Anal., 24, 750, 10.1137/0724049
Babuska, 2009, Effect of numerical integration on meshless methods, Comput. Methods Appl. Mech. Eng., 198, 2886, 10.1016/j.cma.2009.04.008
Shepard, 1968, A two-dimensional function for irregularly spaced data, 517
Belytschko, 1998, On adaptivity and error criteria for mesh free methods, 217
Duarte, 2000, Generalized finite element method for three-dimensional structural mechanics problems, Comput. Struct., 77, 215, 10.1016/S0045-7949(99)00211-4
Mindlin, 1951, Influence of rotary inertia and shear on flexural motion of isotropic elastic plates, J. Appl. Mech., 18, 336, 10.1115/1.4010217
Reddy, 1997
Dobyns, 1981, The analysis of simply-supported orthotropic plates subjected to static and dynamic loads, Am. Inst. Aeronaut. Astronaut. J., 19, 642, 10.2514/3.50984
Reddy, 1984, A simple higher-order theory for laminated composite plates, J. Appl. Mech., 51, 745, 10.1115/1.3167719
Pagano, 1970, Exact solutions for rectangular bidirectional composites and sandwich plates, J. Comput. Mater., 4, 20, 10.1177/002199837000400102
Dunavant, 1985, High degree efficient symmetrical Gaussian quadrature rules for the triangle, Int. J. Numer. Methods Eng., 21, 1129, 10.1002/nme.1620210612
Wandzura, 2003, Symmetric quadrature rules on a triangle, Comput. Math. Appl., 45, 1829, 10.1016/S0898-1221(03)90004-6
Strouboulis, 2000, The design and analysis of the generalized finite element method, Comput. Methods Appl. Mech. Eng., 181, 43, 10.1016/S0045-7825(99)00072-9