Analysis of activity driven by upstream regulatory modules (URM) of tapetum specific genes TA29 and A9 at ectopic locations in tobacco transgenics
Tóm tắt
TA29 and A9 are genes from Nicotiana tabacum and Arabidopsis thaliana respectively, which express in a tapetum specific manner. The upstream regulatory modules (URMs; i.e. the promoter and the 5′UTR) of these genes have been used in development of male sterile and restorer lines expressing the barnase and barstar genes for hybrid seed production. While initial studies show that these URMs drive the expression in a tapetum specific manner, there are no recordings of unintended (leaky) expression driven by these URMs at ectopic locations due to position effect in developed transgenic lines. The information on leaky expression driven by tissue specific URMs is important for their use in developing transgenic plants. The present study records the leaky activity of both these URMs in transgenic tobacco lines using β-glucuronidase as a reporter gene. Leaky activity was observed in about one-fourth of the lines developed with TA29. Most interestingly in these lines, the leaky expression of the reporter gene was observed to be restricted to the meristematic tip region of the roots and at the leaf gap from where leaf trace diverges from stem bundles. Such a restricted and unique pattern of leaky activity of a tissue specific promoter or a URM has never been reported before, including the URM of the A9 gene analyzed in the present study. This observation suggests the presence of cryptic cis-elements within the URM of TA29 gene that can possibly activate it in meristematic tissue when integrated at certain ectopic locations. The URM of the A9 gene was also observed to show leaky activity. However, there was no unique pattern as observed with that of TA29. Further, in the study we also show that while the smaller (290 bp) length of TA29 URM can be used to drive the expression of barnase gene to develop male sterile lines, it adversely affects the regeneration of transgenic tobacco lines due to leaky expression. This adverse effect is significantly reduced when the full length (1.5 kb) URM of the TA29 gene is used.
Tài liệu tham khảo
Agarwal P, Garg V, Gautam T, Pillai B, Kanoria S, Burma PK (2014) A study on the influence of different promoter and 5′UTR (URM) cassettes from Arabidopsis thaliana on the expression level of the reporter gene β-glucuronidase in tobacco and cotton. Transgenic Res 23:351–363
Bhullar S, Chakravarthy S, Advani S, Datta S, Pental D, Burma PK (2003) Strategies for development of functionally equivalent promoters with minimum sequence homology for transgene expression in plants: cis-elements in a novel DNA context versus domain swapping. Plant Physiol 132(2):988–998
Chaboute ME, Clement B, Philipps G (2002) S phase and meristem-specific expression of the tobacco RNR1b gene is mediated by an E2F element located in the 5′ leader sequence. J Biol Chem 277:17845–17851
Elmayan T, Tepfer M (1995) Evaluation in tobacco of the organ specificity and strength of the rolD promoter, domain A of the 35S promoter and the 35S2 promoter. Transgenic Res 4(6):388–396
Heslop-Harrison J, Heslop-Harrison Y, Shivanna KR (1984) The evaluation of pollen quality, and a further appraisal of the fluorochromatic (FCR) test procedure. Theor Appl Genet 67:367–375
Holtorf S, Apel K, Bohlmann H (1995) Comparison of different constitutive and inducible promoters for the overexpression of transgenes in Arabidopsis thaliana. Plant Mol Biol 29:637–646
Jagannath A, Bandyopadhyay P, Arumugan N, Gupta V, Pradhan AK, Burma PK, Pental D (2001) The use of spacer DNA fragment insulates the tissue specific expression of a cytotoxic gene (barnase) and allows high frequency generation of transgenic male sterile lines in Brassica juncea L. Mol Breed 8:11–23
Jagannath A, Arumugan N, Gupta V, Pradhan AK, Burma PK, Pental D (2002) Development of transgenic barstar lines and identification of a male sterile (barnase)/restorer (barstar) combination for heterosis breeding in Indian oilseed mustard Brassica juncea. Curr Sci 82:46–52
Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-Glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907
Kanoria S, Burma PK (2012) A 28nt long synthetic 5′UTR (synJ) as an enhancer of transgene expression in dicotyledonous plants. BMC Biotechnol 12:85
Koltunow AM, Truettner J, Cox KH, Wallroth M, Goldberg RB (1990) Different temporal and spatial gene expression patterns occur during anther development. Plant Cell 2:1201–1224
Korkuc P, Schippers JHM, Walter D (2014) Characterization and identification of cis-regulatory elements in arabidopsis based on single-nucleotide polymorphism information. Plant Physiol 164:181–200
Maiti IB, Gowda S, Kiernan J, Ghosh SK, Shepherd RJ (1997) Promoter/leader deletion analysis and plant expression vectors with the figwort mosaic virus (FMV) full length transcript (FLt) promoter containing single or double enhancer domains. Transgenic Res 6:143–156
Mariani C, De Beuckeleer M, Truettner J, Leemans J, Goldberg RB (1990) Induction of male sterility in plants by a chimaeric ribonuclease gene. Nature 347:737–741
Mehrotra AK, Bhullar S, Burma PK (2014) Development of intron-containing barnase gene (barnase-int) encoding a toxic protein to facilitate its cloning in bacterial cells. J Plant Biochem Biotechnol 23:435–439
Odell J, Nagy F, Chua N (1985) Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313:810–812
Paul W, Hodge R, Smartt S, Draper J, Scott R (1992) The isolation and characterisation of the tapetum-specific Arabidopsis thaliana A9 gene. Plant Mol Biol 19:611–622
Peach C, Velten J (1991) Transgene expression variability (position effect) of CAT and GUS reporter genes driven by linked divergent T-DNA promoters. Plant Mol Biol 17:49–60
Rask L, Ellerstrom M, Ezcurra I, Stalberg K, Wycliffe P (1998) Seed-specific regulation of the napin promoter in Brassica napus. J Plant Physiol 152:595–599
Ray K, Bisht NC, Pental D, Burma PK (2007) Development of transgenic barnase/barstartransgenics for hybrid seed production in Indian oilseed mustard (Brassic juncea) using a mutant acetolactate synthase gene conferring resistance to imidazole-based herbicide ‘Pursuit’. Curr Sci 93:1390–1396
Sivaraman I, Arumugam N, Sodhi YS, Gupta V, Mukhopadhyay A, Pradhan AK, Burma PK, Pental D (2004) Development of high oleic and low linoleic acid transgenics in a zero erucic acid Brassica juncea L. (Indian mustard) line by antisense suppression of the fad2 gene. Mol Breed 13:365–375
Svab Z, Hajdukiewicz P, Maliga P (1995) Generation of transgenic tobacoo plants by cocultivation of leaf discs with Agrobacterium pPZP binary vectors. In: Maliga P, Klessig DF, Cashmore AR, Gruissem W, Varner JE (eds) Methods in plant molecular biology. Cold Spring Harbour Laboratory Press, New York, pp 55–77
Vancanneyt G, Schmidt R, O’Connor-Sanchez A, Willmitzer L, Rocha Sosa M (1990) Construction of an intron-containing marker gene: splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium-mediated plant transformation. Mol Gen Genet 220(2):245–250
Verma N, Burma PK (2017) Regulation of tapetum-specific A9 promoter by transcription factors AtMYB80, AtMYB1 and AtMYB4 in Arabidopsis thaliana and Nicotiana tabacum. Plant J 92:481–494