Analysis of a multigrid method for a transport equation by numerical Fourier analysis

Computers & Mathematics with Applications - Tập 35 - Trang 7-12 - 1998
S. Oliveira1
1Department of Computer Science Texas A&M University College Station, TX 77843-3112, U.S.A.

Tài liệu tham khảo

Larsen, 1982, Unconditionally stable diffusion-synthetic acceleration methods for the slab geometry discrete ordinates equations, Nucl. Sci. Eng., 82, 47, 10.13182/NSE82-1 Manteuffel, 1994, A parallel version of a multigrid algorithm for isotropic transport equations, SIAM J. Sci. Comput., 15, 474, 10.1137/0915032 Manteuffel, 1995, A fast multigrid algorithm for isotropic transport problems. I. Pure scattering, SIAM J. Sci. Comput., 16, 601, 10.1137/0916038 Morel, 1991, An angular multigrid acceleration technique for the Sn equations with highly forward-peaked scattering, Nucl. Sci. Eng., 107, 330, 10.13182/NSE91-A23795 Oliveira, 1996, Parallel multigrid methods for transport equations: The anisotropic case, Parallel Computing, 22, 513, 10.1016/0167-8191(96)00012-9 S. Oliveira and Y. Deng, Preconditioned Krylov subspace methods for transport equations, Progress in Nuclear Energy (to appear). Larsen, 1989, Asymptotic solutions of numerical transport problems in optically thick, diffusive regimes II, J. Comput. Phys., 83, 212, 10.1016/0021-9991(89)90229-5 Wesseling, 1992 Oliveira, 1994, A parallel multilevel algorithm for anisotropic transport equations, 388 Oliveira, 1995, Krylov subspace methods for transport equations, 523 Oliveria, 1996, Multigrid and Krylov subspace methods for transport equations: Absorption case, 637