Analysis of a falling film H2O/LiBr absorber at local scale based on entropy generation
Tài liệu tham khảo
Erregueragui, Al Mers, Boutammache, Merroun, and Bouatem, “Modélisation et optimisation de cycles frigorifiques à absorption fonctionnant avec le couple H2O/LiBr.,” 2015, p. 8. Conference: Société Française de Thermique (SFT2015), 26-29 May, La Rochelle, France, [Online]. Available: https://www.sft.asso.fr/Local/sft/dir/user-3775/documents/actes/Congres_2015/Communications/42374-fichier4.pdf.
Wang, 2014, “An overview of ammonia-based absorption chillers and heat pumps, Renew. Sustain. Energy Rev., 31, 681, 10.1016/j.rser.2013.12.021
N’tsoukpoe, 2012
Altamirano, 2019, Review of small-capacity single-stage continuous absorption systems operating on binary working fluids for cooling: theoretical, experimental and commercial cycles, Int. J. Refrig., 106, 350, 10.1016/j.ijrefrig.2019.06.033
Islam, 2006, Heat and mass transfer effectiveness and correlations for counter-flow absorbers, Int. J. Heat Mass Transfer, 49, 4171, 10.1016/j.ijheatmasstransfer.2006.04.002
Perier-Muzet, 2021, Numerical study of the effectiveness of a vertical falling plate film absorber for an absorption chiller, Int. J. Refrig., 127, 221, 10.1016/j.ijrefrig.2021.02.013
Ibarra-Bahena, 2014, Performance of different experimental absorber designs in absorption heat pump cycle technologies: a review, Energies, 7, 751, 10.3390/en7020751
Killion, 2001, A critical review of models of coupled heat and mass transfer in falling film absorption, Int. J. Refrig., 24, 43, 10.1016/S0140-7007(00)00086-4
Mahamoudou, 2022, Review of coupled heat and mass transfer studies in falling film absorbers: modeling, experimental and thermodynamic approaches, Int. J. Refrig., 10.1016/j.ijrefrig.2022.01.024
Babadi, 2005, Characteristics of heat and mass transfer in vapor absorption of falling film flow on a horizontal tube, Int. Commun. Heat Mass Transf., 32, 1253, 10.1016/j.icheatmasstransfer.2005.05.011
Jeong, 2002, Falling-film and droplet mode heat and mass transfer in a horizontal tube LiBr/water absorber, Int. J. Heat Mass Transf., 45, 1445, 10.1016/S0017-9310(01)00262-9
Killion, 2003, Gravity-driven flow of liquid films and droplets in Horizontal Tube Banks, Int. J. Refrig., 26, 516, 10.1016/S0140-7007(03)00009-4
Killion, 2004, Pendant droplet motion for absorption on horizontal tube banks, Int. J. Heat Mass Transf., 47, 4403, 10.1016/j.ijheatmasstransfer.2004.04.032
Ayub, 2003, Plate heat exchanger literature survey and new heat transfer and pressure drop correlations for refrigerant evaporators, Heat Transf. Eng., 24, 3, 10.1080/01457630304056
Abu-Khader, 2012, Plate heat exchangers: recent advances, Renew. Sustain. Energy Rev., 16, 1883, 10.1016/j.rser.2012.01.009
Kelly, 2008
Makinde, 2006, Entropy generation in a liquid film falling along an inclined porous heated plate, Mech. Res. Commun., 33, 692, 10.1016/j.mechrescom.2005.06.010
Haase, 1990, 513
Chermiti, 2011, Entropy generation in gas absorption into a falling liquid film, Mech. Res. Commun., 38, 586, 10.1016/j.mechrescom.2011.08.003
Chermiti, 2013, Effect of a falling gas–liquid absorption film temperature on entropy generation, Heat Mass Transf., 49, 1101, 10.1007/s00231-013-1154-7
Giannetti, 2015, Irreversibility analysis of falling film absorption over a cooled horizontal tube, Int. J. Heat Mass Transfer, 88, 755, 10.1016/j.ijheatmasstransfer.2015.05.022
Giannetti, Rocchetti, Saito, Yamaguchi, “Local entropy generation analaysis of water vapour absorption in a LiBr/H2O solution film over a horizontal cooled tube,” 2015, p. 9. Conference: ICR2015, 16-22 August, Yokohama, Japan, [Online]. Available: https://www.researchgate.net/publication/292681680
Giannetti, 2016, Entropy parameters for falling film absorber optimization, Appl. Therm. Eng., 93, 750, 10.1016/j.applthermaleng.2015.10.049
Hidouri, 2013, Second law analysis of a gas-liquid absorption film, J. Thermodyn., 2013, 1, 10.1155/2013/909162
Mahamoudou, 2022, Thermodynamic analysis in laminar falling film evaporator, Appl. Therm. Eng., 10.1016/j.applthermaleng.2022.118814
Flores, 2014
Nakoryakov, 2011, Heat and mass transfer in the entrance region of the falling film: absorption, desorption, condensation and evaporation, Int. J. Heat Mass Transf., 54, 4485, 10.1016/j.ijheatmasstransfer.2011.06.032
Bo, 2010, Numerical simulation on the falling film absorption process in a counter-flow absorber, Chem. Eng. J., 156, 607, 10.1016/j.cej.2009.04.066
McNeely, 1979, Thermophysical properties of aqueous solutions of lithium bromide, ASHRAE Trans., 85, 413
Arroiabe, 2022, Numerical analysis of different mass transfer models for falling film absorbers, Int. J. Heat Mass Transf., 182, 10.1016/j.ijheatmasstransfer.2021.121892
Julia Core development team. The Julia Programming Language. Accessed: Jan. 09, 2020. [Online]. Available: https://julialang.org/
Conn, 2000, Trust-Region Methods. MPS-SIAM Series on Optimization, Society for Industrial and Applied Mathematics
Herold, 2005, Thermodynamic properties of aqueous lithium bromide using a multiproperty free energy correlation, HVACR Res., 11, 377, 10.1080/10789669.2005.10391144
Huaylla, 2017
Karami, 2009, A numerical study on the absorption of water vapor into a film of aqueous LiBr falling along a vertical plate, Heat Mass Transf., 46, 197, 10.1007/s00231-009-0557-y
Grossman, 1996, Improved property data correlations of absorption fluids for computer simulation of heat pump cycles, 102, 1278
Bird, 1960, Transport Phenomena Wiley, New york, AIChE J., 7
Han, 2012, 327
Mascarenhas, 2013, Investigation of eddy diffusivity and heat transfer coefficient for free-falling turbulent liquid films subjected to sensible heating, Int. J. Heat Mass Transf., 64, 647, 10.1016/j.ijheatmasstransfer.2013.04.061
Shukri, 2016