Analysis of a delay-induced mathematical model of cancer
Tóm tắt
Từ khóa
Tài liệu tham khảo
De Pillis, L.G., Radunskaya, A.E.: The dynamics of optimally controlled tumour model, a case study. Math. Comput. Model. 37, 1221–1244 (2003)
Unni, P., Seshaiyer, P.: Mathematical modeling, analysis, and simulation of tumor dynamics with drug interventions. Comput. Math. Methods Med. 2019, 4079298 (2019)
Abta, A., Laarabi, H., Alaoui, H.T.: The Hopf bifurcation analysis and optimal control of a delayed SIR epidemic model. Int. J. Anal. 2014, 940819 (2014)
Rezapour, S., Mohammadi, H., Samei, M.E.: SEIR epidemic model for COVID-19 transmission by Caputo derivative of fractional order. Adv. Differ. Equ. 2020(490), 1 (2020)
Mohammadi, H., Kumar, S., Rezapour, S., Etemad, S.: A theoretical study of the Caputo–Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control. Chaos Solitons Fractals 144, 110668 (2021)
Rezapour, S., Mohammadi, H.: A study on the AH1N1/09 influenza transmission model with the fractional Caputo–Fabrizio derivative. Adv. Differ. Equ. 2020(488), 1 (2020)
Aydogan, S.M., Baleanu, D., Mohammadi, H., Rezapour, S.: On the mathematical model of Rabies by using the fractional Caputo–Fabrizio derivative. Adv. Differ. Equ. 2020(382), 1 (2020)
De Pillis, L.G., Fister, K.R., Gu, W., Collins, C., Daub, M., Gross, D., Moore, J., Preskill, B.: Mathematical model creation for cancer chemo-immunotherapy. Comput. Math. Methods Med. 10, 165–184 (2009)
De Pillis, L.G., Radunskaya, A.E.: A mathematical tumour model with immune resistance and drug therapy: an optimal control approach. J. Theor. Med. 3, 79–100 (2001)
Kartal, S.: Mathematical modeling and analysis of tumor–immune system interaction by using Lotka–Volterra predator–prey-like model with piecewise constant arguments. Period. Eng. Nat. Sci. 2, 7–12 (2014)
Pang, L., Liu, S., Zhang, X., Tian, T.: Mathematical modeling and dynamic analysis of anti-tumor immune response. J. Appl. Math. Comput. 62, 473–488 (2019)
Sardar, M., Biswas, S., Khajanchi, S.: The impact of distributed time delay in a tumor–immune interaction system. Chaos Solitons Fractals 142, 110483 (2021)
Galach, M.: Dynamics of the tumour-immune system competition: the effect of time delay. Int. J. Appl. Math. Comput. Sci. 13, 395–406 (2003)
McCluskey, C.C.: Complete global stability for an SIR epidemic model with delay-distributed or discrete. Nonlinear Anal., Real World Appl. 11, 55–59 (2010)
Banerjee, S.: Immunotherapy with interleukin-2: a study based on mathematical modelling. Int. J. Appl. Math. Comput. Sci. 18, 389–398 (2008)
Li, H., Takeuchi, Y.: Dynamics of the density dependent predator–prey system with Beddington–DeAngelis functional response. J. Math. Anal. Appl. 374, 644–654 (2011)
Yu, P.: Closed-form conditions of bifurcation points for general differential equations. Int. J. Bifurc. Chaos 15, 1467–1483 (2005)
Ghosh, D., Khajanchi, S., Mangiarotti, S., Denis, F., Dana, S.K., Letellier, C.: How tumour growth can be delayed interactions between cancer cells and the microenviroment? Biosystems 158, 17–30 (2017)
Zhang, J., Jin, Z., Yan, J., Sun, G.: Stability and Hopf bifurcation in a delayed competition system. Nonlinear Anal., Theory Methods Appl. 70, 658–670 (2009)
Li, F., Li, H.: Hopf bifurcation of a predator–prey model with time delay and stage structure for the prey. Math. Comput. Model. 55, 672–679 (2012)
Al-Mahdi, A.M., Khirallah, M.Q.: Bifurcation analysis of a model of cancer. Eur. Sci. J. 12, 1857–7881 (2016)
Khoshnevisan, L., Liu, X., Salmasi, F.R.: Stability and Hopf bifurcation analysis of a TCP/RAQM network with ISMC procedure. Chaos Solitons Fractals 118, 255–273 (2019)
Beretta, E., Takeuchi, Y.: Global stability of single-species diffusion Volterra models with continuous time delays. Bull. Math. Biol. 49, 431–448 (1987)
Yafia, R.: Stability of limit cycle in a delayed model for tumour immune system competition with negative immune response. Discrete Dyn. Nat. Soc. 2006, 58463 (2006)
Xu, R., Ma, Z.: Global stability analysis of a delay SEIRS epidemic model with saturation incidence rate. Nonlinear Dyn. 61, 229–239 (2010)
Rihan, F.A., Abdelrahman, D.H., Al-Maskari, F., Ibrahim, F., Abdeen, M.A.: Delay differential model for tumour–immune response with chemo-immunotherapy and optimal control. Comput. Math. Methods Med. 2014, 982978 (2014)
Xu, S., Wei, X., Zhang, F.: A time-delayed mathematical model for tumor growth with the effect of a periodic therapy. Comput. Math. Methods Med. 2016, 3643019 (2016)
Yua, M., Dong, Y., Takeuchi, Y.: Dual role of delay effects in a tumour–immune system. J. Biol. Dyn. 11, 334–347 (2017)
Malinzi, J.: Mathematical analysis of a mathematical model of chemovirotherapy: effect of drug infusion method. Comput. Math. Methods Med. 2019, 7576591 (2019)
El Alami Laaroussi, A., El Hia, M., Rachik, M., Ghazzali, R.: Analysis of a multiple delays model for treatment of cancer with oncolytic virotherapy. Comput. Math. Methods Med. 2019, 1732815 (2019)
Villasana, M., Radunskaya, A.: A delay differential equation model for tumor growth. Math. Biol. 47, 270–294 (2003)
Yang, X., Chen, L., Chen, J.: Permanence and positive periodic solution for the single-species non-autonomous delay diffusive models. Comput. Math. Appl. 32, 109–116 (1996)
Freedman, H.I., Erbe, L., Rao, V.S.H.: Three species food chain models with mutual interference and time delays. Math. Biosci. 80, 57–80 (1986)
Akram, T., Abbas, M., Riaz, M.B., Ismail, A.I., Ali, N.M.: An efficient numerical technique for solving time fractional Burgers equation. Alex. Eng. J. 59, 2201–2220 (2020)
Khalid, N., Abbas, M., Iqbal, M.K., Baleanu, D.: A numerical investigation of Caputo time fractional Allen–Cahn equation using redefined cubic B-spline functions. Adv. Differ. Equ. 2020(158), 1 (2020)
Iqbal, A., Siddiqui, M.J., Muhi, I., Abbas, M., Akram, T.: Nonlinear waves propagation and stability analysis for planar waves at far field using quintic B-spline collocation method. Alex. Eng. J. 59, 2695–2703 (2020)
Khalid, N., Abbas, M., Iqbal, M.K., Singh, J., Ismail, A.I.M.: A computational approach for solving time fractional differential equation via spline functions. Alex. Eng. J. 59, 3061–3078 (2020)
Akram, T., Abbas, M., Iqbal, A., Baleanu, D., Asad, J.H.: Novel numerical approach based on modified extended cubic B-spline functions for solving non-linear time-fractional telegraph equation. Symmetry 12(7), 1154 (2020)
Akram, T., Abbas, M., Ali, A., Iqbal, A., Baleanu, D.: A numerical approach of a time fractional reaction–diffusion model with a non-singular kernel. Symmetry 12(1653), 1–19 (2020)
Amin, M., Abbas, M., Iqbal, M.K., Baleanu, D.: Numerical treatment of time-fractional Klein–Gordon equation using redefined extended cubic B-spline functions. Front. Phys. 8(288), 1–13 (2020)
Amin, M., Abbas, M., Iqbal, M.K., Ismail, A.I.M., Baleanu, D.: A fourth order non-polynomial quintic spline collocation technique for solving time fractional super diffusion equations. Adv. Differ. Equ. 2019(514), 1 (2019)
Khalid, N., Abbas, M., Iqbal, M.K.: Non-polynomial quintic spline for solving fourth-order fractional boundary value problems involving product terms. Appl. Math. Comput. 349, 393–407 (2019)
Iqbal, M.K., Abbas, M., Wasim, I.: New cubic B-spline approximation for solving third order Emden–Flower type equations. Appl. Math. Comput. 331, 319–333 (2018)