Analysis of a Novel Peptide That Is Capable of Inhibiting the Enzymatic Activity of the Protein Kinase A Catalytic Subunit-Like Protein from Trypanosoma equiperdum

The Protein Journal - Tập 42 - Trang 709-727 - 2023
Nelson A. Araujo1, José Bubis2,3,4
1Escuela de Ciencias Agroalimentarias, Animales y Ambientales, Universidad de O’Higgins, Campus Colchagua, San Fernando, Chile
2Unidad de Polimorfismo Genético, Genómica y Proteómica, Dirección de Salud, Fundación Instituto de Estudios Avanzados IDEA, Caracas, Venezuela
3Unidad de Señalización Celular y Bioquímica de Parásitos, Dirección de Salud, Fundación Instituto de Estudios Avanzados IDEA, Caracas, Venezuela
4Departamento de Biología Celular, Universidad Simón Bolívar, Caracas, Venezuela

Tóm tắt

A 26-residue peptide possessing the αN-helix motif of the protein kinase A (PKA) regulatory subunit-like proteins from the Trypanozoom subgenera (VAP26, sequence = VAPYFEKSEDETALILKLLTYNVLFS), was shown to inhibit the enzymatic activity of the Trypanosoma equiperdum PKA catalytic subunit-like protein, in a similar manner that the mammalian heat-stable soluble PKA inhibitor known as PKI. However, VAP26 does not contain the PKI inhibitory sequence. Bioinformatics analyzes of the αN-helix motif from various Trypanozoon PKA regulatory subunit-like proteins suggested that the sequence could form favorable peptide-protein interactions of hydrophobic nature with the PKA catalytic subunit-like protein, which possibly may represent an alternative PKA inhibitory mechanism. The sequence of the αN-helix motif of the Trypanozoon proteins was shown to be highly homologous but significantly divergent from the corresponding αN-helix motifs of their Leishmania and mammalian counterparts. This sequence divergence contrasted with the proposed secondary structure of the αN-helix motif, which appeared conserved in every analyzed regulatory subunit-like protein. In silico mutation experiments at positions I234, L238 and F244 of the αN-helix motif from the Trypanozoon proteins destabilized both the specific motif and the protein. On the contrary, mutations at positions T239 and Y240 stabilized the motif and the protein. These results suggested that the αN-helix motif from the Trypanozoon proteins probably possessed a different evolutionary path than their Leishmania and mammalian counterparts. Moreover, finding stabilizing mutations indicated that new inhibitory peptides may be designed based on the αN-helix motif from the Trypanozoon PKA regulatory subunit-like proteins.

Tài liệu tham khảo

Rodrigues JCF, Godinho PLJ, de Souza W (2014) Proteins and proteomics of leishmania and trypanosoma, subcellular biochemistry. In: Santos A et al. (eds) Proteins and proteomics of leishmania and trypanosoma. Subcellular biochemistry, vol 74. Springer, Dordrecht, pp 1–42. https://doi.org/10.1007/978-94-007-7305-9_1 Leach TM, Roberts CJ (1981) Present status of chemotherapy and chemoprophylaxis of animal trypanosomiasis in the Eastern hemisphere. Pharmacol Ther 13(1):91–147. https://doi.org/10.1016/0163-7258(81)90069-3 Connor RJ (1992) The diagnosis, treatment and prevention of animal trypanosomiasis under field conditions. In: Programmer for the control of african animal trypanosomiasis and related development: ecological and technical aspects. FAO animal production and health paper no. 100. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy Dávila AM, Silva RA (2000) Animal trypanosomiasis in South America. Current status, partnership, and information technology. Ann N Y Acad Sci 916:199–212. https://doi.org/10.1111/j.1749-6632.2000.tb05291.x Bubis J, Martínez JC, Calabokis M, Ferreira J, Sanz-Rodríguez CE, Navas V, Escalona JL, Guo Y, Taylor SS (2018) The gene product of a Trypanosoma equiperdum ortholog of the cAMP-dependent protein kinase regulatory subunit is a monomeric protein that is not capable of binding cyclic nucleotides. Biochimie 146:166–180. https://doi.org/10.1016/j.biochi.2017.12.010 Bachmaier S, Volpato Santos Y, Kramer S, Githure GB, Klöckner T, Pepperl J, Baums C, Schenk R, Schwede F, Genieser HG, Dupuy JW, Forné I, Imhof A, Basquin J, Lorentzen E, Boshart M (2019) Nucleoside analogue activators of cyclic AMP-independent protein kinase A of Trypanosoma. Nat Commun 10(1):1421. https://doi.org/10.1038/s41467-019-09338-z Gould MK, Bachmaier S, Ali JA, Alsford S, Tagoe DN, Munday JC, Schnaufer AC, Horn D, Boshart M, de Koning HP (2013) Cyclic AMP effectors in African trypanosomes revealed by genome-scale RNA interference library screening for resistance to the phosphodiesterase inhibitor CpdA. Antimicrob Agents Chemother 57(10):4882–4893. https://doi.org/10.1128/AAC.00508-13 Bachmaier S, Gould MK, Polatoglou E, Omelianczyk R, Brennand AE, Aloraini MA, Munday JC, Horn D, Boshart M, de Koning HP (2023) Novel kinetoplastid-specific cAMP binding proteins identified by RNAi screening for cAMP resistance in Trypanosoma brucei. Front Cell Infect Microbiol 13:1204707. https://doi.org/10.3389/fcimb.2023.1204707 Søberg K, Jahnsen T, Rognes T, Skalhegg BS, Laerdahl JK (2013) Evolutionary Paths of the cAMP-Dependent Protein Kinase (PKA) Catalytic Subunits. PLoS ONE 8(4):e60935. https://doi.org/10.1371/journal.pone.0060935 Taylor SS, Kim C, Cheng CY, Brown SHJ, Wu J, Kannan N (2008) Signaling through cAMP and cAMP-dependent protein kinase: diverse strategies for drug design. Biochim Biophys Acta 1784(1):16–26. https://doi.org/10.1016/j.bbapap.2007.10.002 Peng M, Aye TT, Snel B, van Breukelen B, Scholten A, Heck AJ (2015) Spatial organization in protein kinase A signaling emerged at the base of animal evolution. J Proteome Res 14(7):2976–2987. https://doi.org/10.1021/acs.jproteome.5b00370 Bachmaier S, Boshart M (2013) Kinetoplastid AGC kinases. In: Doerig D, Spaeth CS, Wiese M, Selzer PM (eds) Protein phosphorylation in eukaryotic parasites: potential for chemotherapy. Wiley, London, pp 99–122 Calabokis M, González Y, Merchán A, Escalona JL, Araujo NA, Sanz-Rodríguez CE, Cywiak C, Spencer LM, Martínez JC, Bubis J (2016) Immunological identification of a cAMP-dependent protein kinase regulatory subunit-like protein from the Trypanosoma equiperdum TeAp-N/D1 isolate. J Immunoassay Immunochem 37(5):485–514. https://doi.org/10.1080/15321819.2016.1162799 Araujo NA, Rincón M, Vonasek E, Calabokis M, Bubis J (2020) Biochemical characterization of the cAMP-dependent protein kinase regulatory subunit-like protein from Trypanosoma equiperdum, detection of its inhibitory activity, and identification of potential interacting proteins. Biochimie 168:110–123. https://doi.org/10.1016/j.biochi.2019.10.020 Bhattacharya A, Biswas A, Das PK (2012) Identification of a protein kinase A regulatory subunit from Leishmania having importance in metacyclogenesis through induction of autophagy. Mol Microbiol 83(3):548–564. https://doi.org/10.1111/j.1365-2958.2011.07950.x Bao Y, Weiss LM, Hashimoto M, Nara T, Huang H (2009) Short report: protein kinase A regulatory subunit interacts with P-type ATPases in Trypanosoma cruzi. Am J Trop Med Hyg 80(6):941–943. https://doi.org/10.4269/ajtmh.2009.80.941 Malki-Feldman L, Jaffe CL (2009) Leishmania major: effect of protein kinase A and phosphodiesterase activity on infectivity and proliferation of promastigotes. Exp Parasitol 123(1):39–44. https://doi.org/10.1016/j.exppara.2009.05.010 Tsigankov P, Gherardini PF, Helmer-Citterich M, Spaeth GF, Myler PJ, Zilberstein D (2014) Regulation dynamics of Leishmania differentiation: deconvoluting signals and identifying phosphorylation trends. Mol Cell Proteomics 13(7):1769–1786. https://doi.org/10.1074/mcp.M114.037705 Kornev AP, Taylor SS, Ten Eyck LF (2008) A generalized allosteric mechanism for cis-regulated cyclic nucleotide binding domains. PLoS Comput Biol 4(4):e1000056. https://doi.org/10.1371/journal.pcbi.1000056 Bruystens JGH, Wu J, Fortezzo A, Kornev AP, Blumenthal DK, Taylor SS (2014) PKA RIα homodimer structure reveals an intermolecular interface with implications for cooperative cAMP binding and carney complex disease. Structure 22(1):59–69. https://doi.org/10.1016/j.str.2013.10.012 Lu TW, Wu J, Aoto PC, Weng JH, Ahuja LG, Sun N, Cheng CY, Zhang P, Taylor SS (2019) Two PKA RIα holoenzyme states define ATP as an isoform-specific orthosteric inhibitor that competes with the allosteric activator, cAMP. Proc Natl Acad Sci USA 116(33):16347–16356. https://doi.org/10.1073/pnas.1906036116 Escalona JL, Bubis J (2021) Reversible phosphorylation of a protein from Trypanosoma equiperdum that exhibits homology with the regulatory subunits of mammalian cAMP-dependent protein kinases. Biochimie 181:204–213. https://doi.org/10.1016/j.biochi.2020.12.018 Araujo NA, Bubis J (2019) Sequence analysis of the cAMP-dependent protein kinase regulatory subunit-like protein from Trypanosoma brucei. Acta Parasit 64:262–267. https://doi.org/10.2478/s11686-019-00037-9 Araujo NA, Bruix M, Laurents DV (2021) Disorder and partial folding in the regulatory subunit hinge region of Trypanosoma brucei protein kinase A: the C-linker portion inhibits the parasite’s protein kinase A. Arch Biochem Biophys 698:108731. https://doi.org/10.1016/j.abb.2020.108731 Kortemme T, Baker D (2002) Asimple physical model for binding energy hot spots in protein-protein complexes. Proc Natl Acad Sci USA 99(22):14116–14121. https://doi.org/10.1073/pnas.202485799 Bromberg Y, Overton J, Vaisse C, Leibel RL, Rost B (2009) In silico mutagenesis: a case study of the melanocortin 4 receptor. FASEB J 23(9):3059–3069. https://doi.org/10.1096/fj.08-127530 Bao Y, Weiss LM, Brausntein VL, Huang H (2008) Role of protein kinase A in Trypanosoma cruzi. Infect Immun 76(10):4757–4763. https://doi.org/10.1128/IAI.00527-08 Guevara A, Lugo C, Montilla AJ, Araujo NA, Calabokis M, Bubis J (2019) Glucose deprivation activates a cAMP-independent protein kinase from Trypanosoma equiperdum. Parasitol 146(5):643–652. https://doi.org/10.1017/S0031182018001920 Sedan Y, Marcu O, Lyskov S, Schueler-Furman O (2016) Peptiderive server: derive peptide inhibitors from protein–protein interactions. Nucl Acids Res 44(W1):W536–W541. https://doi.org/10.1093/nar/gkw385 Lavi A, Ngan CH, Movshovitz-Attias D, Bohnuud T, Yueh C, Beglov D, Schueler-Furman O, Kozakov D (2013) Detection of peptide-binding sites on protein surfaces: the first step toward the modeling and targeting of peptide-mediated interactions. Proteins 81(12):2096–2105. https://doi.org/10.1002/prot.24422 Bohnuud T, Jones G, Schueler-Furman O, Kozakov D (2017) Detection of peptide-binding sites on protein surfaces using the peptimap server. Methods Mol Biol 1561:11–20. https://doi.org/10.1007/978-1-4939-6798-8_2 Dayhoff MO (1978) Atlas of protein sequence and structure. national biomedical research foundation, Silver Spring, MD Strait BJ, Dewey TG (1996) The Shannon information entropy of protein sequences. Biophys J 71(1):148–155. https://doi.org/10.1016/S0006-3495(96)79210-X Munro D, Singh M (2020) DeMaSk: a deep mutational scanning substitution matrix and its use for variant impact prediction. Bioinformatics 36(22–23):5322–5329. https://doi.org/10.1093/bioinformatics/btaa1030 Trifinopoulos J, Nguyen LT, von Haeseler A, Minh BQ (2016) W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucl Acids Res 44(W1):W232–W235. https://doi.org/10.1093/nar/gkw256 Letunic I, Bork P (2019) Interactive tree of life (iTOL) v4:recent updates and new developments. Nucl Acids Res 47(W1):W256–W259. https://doi.org/10.1093/nar/gkz239 Hopf TA, Green AG, Schubert B, Mersmann S, Scharfe CPI, Ingraham JB, Toth-Petroczy A, Brock K, Riesselman AJ, Palmedo P, Kang C, Sheridan R, Draizen EJ, Dallago C, Sander C, Marks DS (2019) The EVcouplings Python framework for coevolutionary sequence analysis. Bioinformatics 35(9):1582–1584. https://doi.org/10.1093/bioinformatics/bty862 Capriotti E, Fariselli P, Casadio R (2005) I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure. Nucl Acids Res 33(Web Server Issue):W306–W310. https://doi.org/10.1093/nar/gki375 Musil M, Khan RT, Beier A, Stourac J, Konegger H, Damborsky J, Bednar D (2021) FireProtASR: a web server for fully automated ancestral sequence reconstruction. Brief Bioinform 22(4):1–11. https://doi.org/10.1093/bib/bbaa337 Meinkoth JL, Alberts AS, Went W, Fantozzi D, Taylor SS, Hagiwara M, Montminy M, Feramisco JR (1993) Signal transduction through the cAMP-dependent protein kinase. Mol Cell Biochem 127:179–186. https://doi.org/10.1007/BF01076769 Dalton GD, Dewey WL (2006) Protein kinase inhibitor peptide (PKI): a family of endogenous neuropeptides that modulate neuronal cAMP-dependent protein kinase function. Neuropeptides 40(1):23–34. https://doi.org/10.1016/j.npep.2005.10.002 Kelley L, Mezulis S, Yates C, Wass MN, Sternberg MJ (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10(6):845–858. https://doi.org/10.1038/nprot.2015.053 Murzin AG (1998) How far divergent evolution goes in proteins. Curr Opin Struct Biol 8(3):380–387. https://doi.org/10.1016/s0959-440x(98)80073-0 Jafaria N, Del Riob J, Akimotoa M, Byunc JA, Boultonc S, Moleschia K, Alsayyeda Y, Swansonc P, Huanga J, Martinez Pomiera K, Leea C, Wub J, Taylor SS, Melacini G (2021) Noncanonical protein kinase A activation by oligomerization of regulatory subunits as revealed by inherited Carney complex mutations. Proc Natl Acad Sci USA 118(21):e2024716118. https://doi.org/10.1073/pnas.2024716118 Bubis J, Neitzel JJ, Saraswat LD, Taylor SS (1988) A point mutation abolishes binding of cAMP to site A in the regulatory subunit of CAMP-dependent protein kinase. J Biol Chem 263(20):9668–9673. https://doi.org/10.1016/S0021-9258(19)81569-7 Ung MU, Lu B, McCammon JA (2006) E230Q mutation of the catalytic subunit of cAMP-dependent protein kinase affects local structure and the binding of peptide inhibitor. Biopolymers 81:428–439. https://doi.org/10.1002/bip.20434 Pollock DD, Thiltgen G, Goldstein RA (2012) Amino acid coevolution induces an evolutionary Stokes shift. Proc Natl Acad Sci USA 109(21):E1352–E1359. https://doi.org/10.1073/pnas.1120084109 Ashenberg O, Gong LI, Bloom JD (2013) Mutational effects on stability are largely conserved during protein evolution. Proc Natl Acad Sci USA 110(52):21071–21076. https://doi.org/10.1073/pnas.1314781111 Chaudhuri D, Majumder S, Datta J, Giri K (2021) In silico study of mutational stability of SARS-CoV-2 proteins. Protein J 40(3):328–340. https://doi.org/10.1007/s10930-021-09988-3 Barik S (2020) Evolution of protein structure and stability in global warming. Int J Mol Sci 21:9662. https://doi.org/10.3390/ijms21249662 Serohijos AW, Rimas Z, Shakhnovich EI (2012) Protein biophysics explains why highly abundant proteins evolve slowly. Cell Rep 2(2):249–256. https://doi.org/10.1016/j.celrep.2012.06.022