Analysis of a Convective Storm Crossing Poyang Lake in China
Tóm tắt
Từ khóa
Tài liệu tham khảo
Alcott, T. I., W. J. Steenburgh, and N. F. Laird, 2012: Great Salt Lake-effect precipitation: Observed frequency, characteristics, and associated environmental factors. Wea. Forecasting, 27, 954–971, doi: 10.1175/waf-d-12-00016.1.
Angel, J. R., and S. A. Isard, 1998: The frequency and intensity of Great Lake cyclones. J. Climate, 11, 61–71, doi: 101175/1520-0442(1998)011<0061:tfaiog>2.0.co;2.
Ballentine, R. J., G. P. Byrd, and T. A. Niziol, 1993: An operational forecast model for lake-effect snowstorms. Thirteenth Conference on Weather Analysis and Forecasting, Vienna, VA, 2–6 August, Amer. Meteor. Soc, 154–157.
Barthold, F. E., and D. A. R. Kristovich, 2011: Observations of the cross-lake cloud and snow evolution in a lake-effect snow event. Mon. Wea. Rev., 139, 2386–2398, doi: 10.1175/mwr-d-10-05001.1.
Byrd G. P., R. A. Anstett, J. E. Heim, et al, 1991: Mobile sounding observations of lake-effect snowbands in western and central New York. Mon. Wea. Rev., 119, 2323–2332, doi: 10.1175/1520-0493(1991)119<2323:msoole>2.0.co;2.
Cao, J. H., X. M. Liu, G. P. Li, et al., 2015: Analysis of the phenomenon of lake-land breeze in Poyang lake area. Plateau Meteor., 34, 426–435. (in Chinese)
Carpenter, D. M., 1993: The lake effect of the Great Salt Lake: Overview and forecast problems. Wea. Forecasting, 8 181–193, doi: 10.1175/1520-0434(1993)008<0181:TLEOTG>2.0.CO;2.
Dockus, D. A., 1985: Lake effect snow forecasting in the computer age. Natl. Wea. Dig., 10, 5–19.
Du, Y., and G. X. Chen, 2019: Heavy rainfall associated with double low-level jets over southern China. Part II: Convection initiation. Mon. Wea. Rev., 47, 543–565, doi: 10.1175/MWR-D-18-0102.1.
Fu, M. N., Y. F. Zheng, H. B. Zou, et al, 2013: Analysis on weakening process of convective system passing over Poyang Lake in summer. Plateau Meteor, 32, 865–873. (in Chinese)
Grell, G. A., and S. R. Freitas, 2014: A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmos. Chem. Phys., 14, 5233–5250, doi: 10.5194/acp-14-5233-2014.
Gu, H. P., Z. G. Ma, and M. X. Li, 2016: Effect of a large and very shallow lake on local summer precipitation over the Lake Taihu basin in China. J. Geophys. Res. Atmos., 121, 8832–8848, doi: 10.1002/2015JD024098.
Hjelmfelt, M. R., 1990: Numerical study of the influence of environmental conditions on lake-effect snowstorms over Lake Michigan. Mon. Wea. Rev., 118, 138–150, doi: 10.1175/1520-0493(1990)118<0138:NSOTIO>2.0.CO;2.
Holroyd, E. W. III, 1971: Lake-effect cloud bands as seen from weather satellites. J. Atmos. Sci., 28, 1165–1170, doi: 10.1175/1520-0469(1971)028<1165:LECBAS>2.0.CO;2.
Kristovich, D. A. R., and M. L. Spinar, 2005: Diurnal variations in lake-effect precipitation near the western Great Lakes. J. Hydrometeor, 6, 210–218, doi: 10.1175/JHM403.1.
Kristovich, D. A. R., L. Bard, and L. Stoecker, 2018: Influence of Lake Erie on a Lake Ontario lake-effect snowstorm. J. Appl. Meteor. Climatol, 57, 2019–2033, doi: 10.1175/JAMC-D-17-0349.1.
Laird, N. F., 1999: Observation of coexisting mesoscale lake-effect vortices over the western Great Lakes. Mon. Wea. Rev., 127, 1137–1141, doi: 101175152004931999)127<1137OOCMLE>2.0.CO;2.
Laird, N. F., J. Desrochers, and M. Payer, 2009: Climatology of lake-effect precipitation events over Lake Champlain. J. Appl. Meteor. Climatol, 48, 232–250, doi: 1011752008JAMC1923.1.
Laird, N., R. Sobash, and N. Hodas, 2010: Climatological conditions of lake-effect precipitation events associated with the New York State Finger Lakes. J. Appl. Meteor. Climatol, 49, 1052–1062, doi: 10.1175/2010jamc2312.1.
Laird, N., A. M. Bentley, S. A. Ganetis, et al, 2016: Climatology of lake-effect precipitation events over Lake Tahoe and Pyramid Lake. J. Appl. Meteor. Climatol, 55, 297–312, doi: 10.1175/JAMC-D-14-0230.1.
Lang, C. E., J. M. McDonald, L. Gaudet, et al, 2018: The Influence of a lake-to-lake connection from Lake Huron on the lake-effect snowfall in the vicinity of Lake Ontario. J. Appl. Meteor. Climatol, 57, 1423–1439, doi: 10.1175/JAMC-D-17-0225.1.
Li, Y. L., J. Yao, X. L. Zhang, et al., 2017: Study on the vertical stratification in Poyang Lake. Resour. Environ. Yangtze Basin, 26, 915–924, doi: 10.11870/cjlyzyyhj201706014. (in Chinese)
Liang, X. D., 2007: An integrating velocity-azimuth process single-Doppler radar wind retrieval method. J. Atmos. Oceanic Technol, 24, 658–665, doi: 10.1175/jtech2047.1.
Lombardo, K. A., and B. A. Colle, 2012: Ambient conditions associated with the maintenance and decay of quasi-linear convective systems crossing the northeastern U. S. coast. Mon. Wea. Rev., 140, 3805–3819, doi: 101175/MWR-D-12-00050.1.
Lu, N. P., S. M. Li, N. Zhang, et al., 1988: The calculation of momentum, sensible and latent heat fluxes by bulk transfer method and sodar measurements. Proc. US-PRC International TOGA Symposium, China Ocean Press, Beijing, 251–262.
Markowski, P., and Y. Richardson, 2010: Mesoscale instabilities. Mesoscale Meteorology in Midlatitudes, P. Markowski, and Y. Richardson, Eds., John Wiley & Sons, Ltd, Chichester, West Sussex, UK, 97 pp, doi: 10.1002/9780470682104.ch3.
McMillen, J. D., and W. J. Steenburgh, 2015: Impact of micro-physics parameterizations on simulations of the 27 October 2010 Great Salt Lake-effect snowstorm. Wea. Forecasting, 30, 136–152, doi: 10.1175/WAF-D-14-00060.1.
Metz, N. D., 2011: Persistence and dissipation of Lake Michigan-crossing mesoscale convective systems. Ph.D. dissertation, University at Albany, State University of New York, Albany, NY, 237 pp.
Miner, T. J., and J. M. Fritsch, 1997: Lake-effect rain events. Mon. Wea. Rev., 125, 3231–3248, doi: 10.1175/1520-0493(1997)125<3231:LERE>2.0.CO;2.
Moore, P. K., and R. E. Orville, 1990: Lightning characteristics in lake-effect thunderstorms. Mon. Wea. Rev., 118, 1767–1782, doi: 10.1175/1520-0493(1990)118<1767:LCILET>2.0.CO;2.
Owens, N. D., R. M. Rauber, B. F. Jewett, et al., 2017: The contribution of lake enhancement to extreme snowfall within the Chicago-Milwaukee urban corridor during the 2011 Groundhog Day blizzard. Mon. Wea. Rev., 145, 2405–2420, doi: 10.1175/mwr-d-17-0025.1.
Payer, M., J. Desrochers, and N. F. Laird, 2007: A lake-effect snowband over Lake Champlain. Mon. Wea. Rev., 135 3895–3900, doi: 10.1175/2007mwr2031.1.
Petterssen, S., and P. A. Calabrese, 1959: On some weather influences due to warming of the air by the Great Lakes in winter. J. Meteor., 16, 646–652, doi: 10.1175/1520-0469(1959)016<0646:OSWIDT>2.0.CO;2.
Rodriguez, Y., D. A. R. Kristovich, and M. R. Hjelmfelt, 2007: Lake-to-lake cloud bands: Frequencies and locations. Mon. Wea. Rev., 135, 4202–4213, doi: 10.1175/2007mwr1960.1.
Rose, B. L. Jr., 2001: The role of upstream lakes in determining downstream severe lake-effect snowstorms. Ph.D. dissertation, University of Illinois at Urbana-Champaign, Champaign, 182 pp.
Ruhf, R. J., and E. M. C. Cutrim, 2003: Time series analysis of 20 years of hourly precipitation in southwest Michigan. J. Great Lakes Res., 29, 256–267, doi: 10.1016/s0380-1330(03)70431-6.
Schoenberger, L. M., 1986: Mesoscale features of the Michigan land breeze using PAM II temperature data. Wea. Forecasting, 1, 127–135, doi: 101175152004341986001<0127MFOTML>2.0.CO;2.
Schroeder, J. J., D. A. R. Kristovich, and M. R. Hjelmfelt, 2006: Boundary layer and microphysical influences of natural cloud seeding on a lake-effect snowstorm. Mon. Wea. Rev., 134, 1842–1858, doi: 10.1175/mwr3151.1.
Shankman, D., B. D. Keim, T. Nakayama, et al., 2012: Hydrocli-mate analysis of severe floods in China’s Poyang Lake region. Earth Interactions, 16, 1–16, doi: 10.1175/2012EI000455.1.
Slemmer, J. W., 1998: Characteristics of winter snowstorms near Salt Lake City as deduced from surface and radar observations. Master dissertation, Dept. of Meteorology, University of Utah, Utah, 138 pp.
Steenburgh, W. J., S. F. Halvorson, and D. J. Onton, 2000: Climatology of lake-effect snowstorms of the Great Salt Lake. Mon. Wea. Rev., 128, 709–727, doi: 10.1175/1520-0493(2000)128<0709:COLESO>2.0.CO;2.
Wan, J. S., D. M. Lyu, and F. J. Liu, 1994: Summer temperature field and its temperature effect in Poyang Lake. Quart. J. Appl. Meteor, 5, 374–379. (in Chinese)
Wang, J. H., Y. Y. Yang, C. S. Miao, et al, 2017: The numerical study of terrain dynamic influence on warm area heavy rainfall of convergence lines in South China coast. Chinese J. At-mos. Sci., 41, 784–796, doi: 10.3878/j.issn.1006-9895.1702.16182. (in Chinese)
Wang, R. Q., X. M. Liu, and W. D. Guo, 2016: Observation analyses of the lake-land-atmosphere interaction in Poyang Lake region. J. Trop. Meteor, 32, 558–569, doi: 1016032j.issn.1004-4965.2016.04.013. (in Chinese)
Wiggin, B. L., 1950: Great snowstorms of the Great Lakes. Weatherwise, 3, 123–126, doi: 101080/0043167219509927065.
Workoff, T. E., D. A. R., Kristovich, N. F. Laird, et al, 2012: Influence of the Lake Erie overlake boundary layer on deep convective storm evolution. Wea. Forecasting, 27, 1279–1289, doi: 10.1175/WAF-D-11-00076.1.
Wright, D. M., D. J. Posselt, and A. L. Steiner, 2013: Sensitivity of lake-effect snowfall to lake ice cover and temperature in the Great Lakes Region. Mon. Wea. Rev., 141, 670–689, doi: 10.1175/MWR-D-12-00038.1.
Wu, S. S., H. B. Zou, and J. S. Shan, 2018: The effects of different cumulus parameterizations and microphysics schemes in WRF on Typhoon Matmo track after landing. Torr. Rain Disas., 37, 41–47, doi: 103969j.issn.1004-9045201801006. (in Chinese)
Xiao, Y. J., L. P. Liu, and Y. Shi, 2008: Study of methods for three-dimensional multiple-radar reflectivity mosaics. Aca Meteor. Sinica, 22, 351–361.
Xu, A. H., Z. C. Ye, L. C. Ouyang, et al, 2006: The diagnostic analysis of the track and precipitation of Typhoon “Rananim” after landfall. J. Trop. Meteor, 22, 229–236, doi: 10.3969/j.issn.1004-4965.2006.03.004. (in Chinese)
Xu, H. S., and X. F. Ouyang, 1989: The water temperature of Poyang Lake. Oceanologia et Limnologia Sinica, 20, 343–353. (in Chinese)
Zou, H. B., S. W. Zhang, X. D. Liang, et al., 2018: Improved algorithms for removing isolated non-meteorological echoes and ground clutters in CINRAD. J. Meteor. Res., 32 584–597, doi: 10.1007/s13351-018-7176-9.