Analysis of Van der Waals interactions between nanoparticles with different geometries, with accounting for three-particle contributions to the total energy

Pleiades Publishing Ltd - Tập 90 - Trang 1057-1062 - 2016
K. A. Emelyanenko1
1Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia

Tóm tắt

The Axilrod–Teller–Muto method with corrections for triple interactions is used to calculate the energies of Van der Waals interaction for nanosystems containing particles with different geometries. Results are presented for symmetric systems with identical cubic particles of different sizes, for film and cubic particle systems, and for the systems with differently oriented nanorods. Boundary and particle arrangement effects are studied. The fundamental importance of allowing for nonadditive contributions to obtain a reliable quantitative description of interaction processes inside nanosystems is demonstrated. The results are compared to ones obtained using analytical macroscopic methods and the limits of the applicability of macroscopic approximations are estimated.

Tài liệu tham khảo

Yu. S. Barash, Van der Waals Forces (Nauka, Moscow, 1988) [in Russian]. Yu. S. Barash and V. L. Ginzburg, Sov. Phys. Usp. 18, 308 (1975). H. Kim, J. Sofo, D. Velegol, et al., J. Chem. Phys. 125, 174303 (2006). A. Donchev, J. Chem. Phys. 125, 074713 (2006). Y. V. Shtogan and L. M. Woods, J. Phys. Chem. Lett. 1, 1356 (2010). V. Yannopapas, J. Phys. Chem. C 117, 15342 (2014). C. Vannozzi, Soft Matter 8, 5214 (2012). B. W. Kwaadgras, M. W. Verddult, M. Dijkstra, et al., J. Chem. Phys. 138, 104308 (2013). K. A. Emelyanenko, A. M. Emelyanenko, and L. Boinovich, Chem. Lett. 41, 1253 (2012). R. S. Bradley, Philos. Mag. 13, 301 (1932). H. C. Hamaker, Physica 4, 1058 (1937). E. M. Lifshits, Sov. Phys. JETP 2, 73 (1956). D. Langbein, J. Phys. Chem. Solids 32, 133 (1971). N. G. van Kampen, B. R. A. Nijboer, and K. Schram, Phys. Lett. A 26, 307 (1968). R. Podgornik and V. A. Parsegian, J. Chem. Phys. 120, 3401 (2004). R. Podgornik, R. H. French, and V. A. Parsegian, J. Chem. Phys. 124, 044709 (2006). J. Mahanty and B. W. Ninham, Dispersion Forces (Academic, London, 1976). V. A. Parsegian, Van Der Waals Forces: A Handbook for Biologists, Chemists, Engineers, and Physicists (Cambridge Univ. Press, Cambridge, 2006). L. B. Boinovich, Russ. Chem. Rev. 76, 471 (2007). F. London, Z. Phys. 63, 245 (1930). F. London, Z. Phys. Chem. B 11, 222 (1930). H. G. B. Casimir and D. Polder, Phys. Rev. 73, 360 (1948). B. M. Axilrod and E. Teller, J. Chem. Phys. 11, 299 (1943). Y. Muto, J. Phys.-Math. Soc. Jpn. 17, 629 (1943). A. Lucas, Physica 35, 353 (1967). I. E. Dzyaloshinskii, E. M. Lifshits, and L. P. Pitaevskii, Sov. Phys. Usp. 4, 153 (1961). H. Kim, J. Sofo, D. Velegol, et al., Phys. Rev. A 72, 053201 (2005). R. F. Rajter, R. Podgornik, V. A. Parsegian, et al., Phys. Rev. B 76, 045417 (2007). J. F. Dobson, T. Gould, and I. Klich, Phys. Rev. A 80, 012506 (2009). B. J. Rodriguez, S. Jesse, A. P. Baddorf, et al., Phys. Rev. Lett. 98, 247603 (2007). R. F. French, V. A. Parsegian, R. Podgornik, et al., Rev. Mod. Phys. 82, 1889 (2010). Vl. V. Voevodin, S. A. Zhumatii, S. I. Sobolev, et al., Practice of ‘Lomonosov’ Supercomputer (Otkryt. Sistemy, Moscow, 2012) [in Russian].