Analysis of TP53 mutation spectra reveals the fingerprint of the potent environmental carcinogen, aristolochic acid

Mutation Research/Reviews in Mutation Research - Tập 753 - Trang 41-49 - 2013
M. Hollstein1,2, M. Moriya3, A.P. Grollman3, M. Olivier4
1German Cancer Research Center (Deutsches Krebsforschungszentrum), D69120 Heidelberg, Germany
2Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT, UK
3Laboratory of Chemical Biology, Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
4International Agency for Research on Cancer, F69372 Lyon, France

Tài liệu tham khảo

Vogelstein, 1992, Carcinogens leave fingerprints, Nature, 355, 209, 10.1038/355209a0 Hollstein, 1991, p53 mutations in human cancers, Science, 253, 49, 10.1126/science.1905840 Giglia-Mari, 2003, TP53 mutations in human skin cancers, Hum. Mutat., 21, 217, 10.1002/humu.10179 Pfeifer, 2002, Tobacco smoke carcinogens, DNA damage and p53 mutations in smoking-associated cancers, Oncogene, 21, 7435, 10.1038/sj.onc.1205803 Pfeifer, 2003, On the origin of G --> T transversions in lung cancer, Mutat. Res., 526, 39, 10.1016/S0027-5107(03)00013-7 DeMarini, 2001, Lung tumor KRAS and TP53 mutations in nonsmokers reflect exposure to PAH-rich coal combustion emissions, Cancer Res., 61, 6679 Hussain, 2007, TP53 mutations and hepatocellular carcinoma: insights into the etiology and pathogenesis of liver cancer, Oncogene, 26, 2166, 10.1038/sj.onc.1210279 Pleasance, 2010, A small-cell lung cancer genome with complex signatures of tobacco exposure, Nature, 463, 184, 10.1038/nature08629 Pleasance, 2010, A comprehensive catalogue of somatic mutations from a human cancer genome, Nature, 463, 191, 10.1038/nature08658 Petitjean, 2007, Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database, Hum. Mutat., 28, 622, 10.1002/humu.20495 Besaratinia, 2010, Applications of the human p53 knock-in (Hupki) mouse model for human carcinogen testing, FASEB J., 24, 2612, 10.1096/fj.10-157263 Luo, 2001, Knock-in mice with a chimeric human/murine p53 gene develop normally and show wild-type p53 responses to DNA damaging agents: a new biomedical research tool, Oncogene, 20, 320, 10.1038/sj.onc.1204080 Olivier, 2010, TP53 mutations in human cancers: origins, consequences, and clinical use, Cold Spring Harb. Perspect. Biol., 2, a001008, 10.1101/cshperspect.a001008 Petronic, 2000, Tumors of the upper urothelium and endemic nephropathy, 350 Lai, 2010, Population-based case-control study of Chinese herbal products containing aristolochic acid and urinary tract cancer risk, J. Natl. Cancer Inst., 102, 179, 10.1093/jnci/djp467 Yang, 2002, Unusually high incidence of upper urinary tract urothelial carcinoma in Taiwan, Urology, 59, 681, 10.1016/S0090-4295(02)01529-7 Chen, 2012, Aristolochic acid-associated urothelial cancer in Taiwan, Proc. Natl. Acad. Sci. U. S. A., 109, 8241, 10.1073/pnas.1119920109 Grollman, 2013, Aristolochic acid nephropathy: harbinger of a global iatrogenic disease, Environ. Mol. Mutagen., 54, 1, 10.1002/em.21756 Grollman, 2007, Aristolochic acid and the etiology of endemic (Balkan) nephropathy, Proc. Natl. Acad. Sci. U. S. A., 104, 12129, 10.1073/pnas.0701248104 Jelakovic, 2012, Aristolactam-DNA adducts are a biomarker of environmental exposure to aristolochic acid, Kidney Int., 81, 559, 10.1038/ki.2011.371 Moriya, 2011, TP53 Mutational signature for aristolochic acid: an environmental carcinogen, Int. J. Cancer, 129, 1532, 10.1002/ijc.26077 Arlt, 2007, Aristolochic acid mutagenesis: molecular clues to the aetiology of Balkan endemic nephropathy-associated urothelial cancer, Carcinogenesis, 28, 2253, 10.1093/carcin/bgm082 De Broe, 2012, Chinese herbs nephropathy and Balkan endemic nephropathy: toward a single entity aristolochic acid nephropathy, Kidney Int., 81, 513, 10.1038/ki.2011.428 Grollman, 2009, Aristolochic acid nephropathy: an environmental and iatrogenic disease, Adv. Mol. Tox., 3, 211, 10.1016/S1872-0854(09)00007-1 Olivier, 2012, Upper urinary tract urothelial cancers: where it is A:T, Nat. Rev. Cancer, 12, 503, 10.1038/nrc3311 Schetter, 2012, Tumor suppressor p53 (TP53) at the crossroads of the exposome and the cancer genome, Proc. Natl. Acad. Sci. U. S. A., 109, 7955, 10.1073/pnas.1205457109 Djukanovic, 2003, Balkan endemic nephropathy, 588 Shibutani, 2007, Selective toxicity of aristolochic acids I and II, Drug Metab. Dispos., 35, 1217, 10.1124/dmd.107.014688 Hsieh, 2008, Prescription profile of potentially aristolochic acid containing Chinese herbal products: an analysis of National Health Insurance data in Taiwan between 1997 and 2003, Chin Med., 3, 13, 10.1186/1749-8546-3-13 Nortier, 2000, Urothelial carcinoma associated with the use of a Chinese herb (Aristolochia fangchi), N. Engl. J. Med., 342, 1686, 10.1056/NEJM200006083422301 Mengs, 1983, On the histopathogenesis of rat forestomach carcinoma caused by aristolochic acid, Arch. Toxicol., 52, 209, 10.1007/BF00333900 Mengs, 1988, Tumour induction in mice following exposure to aristolochic acid, Arch. Toxicol., 61, 504, 10.1007/BF00293699 Sidorenko, 2012, Lack of recognition by global-genome nucleotide excision repair accounts for the high mutagenicity and persistence of aristolactam-DNA adducts, Nucleic Acids Res., 40, 2494, 10.1093/nar/gkr1095 Martinez, 2002, Progression rate of Chinese herb nephropathy: impact of Aristolochia fangchi ingested dose, Nephrol. Dial. Transplant., 17, 408, 10.1093/ndt/17.3.408 Lai, 2010, Risks of kidney failure associated with consumption of herbal products containing Mu Tong or Fangchi: a population-based case-control study, Am. J. Kidney Dis., 55, 507, 10.1053/j.ajkd.2009.10.055 Grollman, 2007, Role of environmental toxins in endemic (Balkan) nephropathy. October 2006, Zagreb, Croatia, J Am. Soc. Nephrol., 18, 2817, 10.1681/ASN.2007050537 Hranjec, 2005, Endemic nephropathy: the case for chronic poisoning by aristolochia, Croat. Med. J., 46, 116 Ivic, 1969, Etiology of endemic nephropathy, Lijec. Vjesn., 91, 1273 Lord, 2004, DNA adducts and p53 mutations in a patient with aristolochic acid-associated nephropathy, Am. J. Kidney Dis., 43, e11, 10.1053/j.ajkd.2003.11.024 Sidorenko, 2012, Lack of recognition by global-genome nucleotide excision repair accounts for the high mutagenicity and persistence of aristolactam-DNA adducts, Nucleic Acids Res., 40, 2494, 10.1093/nar/gkr1095 Attaluri, 2010, DNA adducts of aristolochic acid II: total synthesis and site-specific mutagenesis studies in mammalian cells, Nucleic Acids Res., 38, 339, 10.1093/nar/gkp815 Kato, 2003, Understanding the function-structure and function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis, Proc. Natl. Acad. Sci. U. S. A., 100, 8424, 10.1073/pnas.1431692100 Marcel, 2009, p53 isoforms – a conspiracy to kidnap p53 tumor suppressor activity?, Cell. Mol. Life Sci., 66, 391, 10.1007/s00018-008-8336-3 Wang, 2012, ACB-PCR measurement of H-ras codon 61 CAA-->CTA mutation provides an early indication of aristolochic acid I carcinogenic effect in tumor target tissues, Environ. Mol. Mutagen., 53, 495, 10.1002/em.21710 McDaniel, 2012, Mutagenicity and DNA adduct formation by aristolochic acid in the spleen of Big Blue(R) rats, Environ. Mol. Mutagen., 53, 358, 10.1002/em.21696 Xing, 2012, Comparison of the mutagenicity of aristolochic acid I and aristolochic acid II in the gpt delta transgenic mouse kidney, Mutat. Res., 743, 52, 10.1016/j.mrgentox.2011.12.021 Hergenhahn, 2004, p53 designer genes for the modern mouse, Cell Cycle, 3, 738, 10.4161/cc.3.6.890 Liu, 2004, Human tumor p53 mutations are selected for in mouse embryonic fibroblasts harboring a humanized p53 gene, Proc. Natl. Acad. Sci. U. S. A., 101, 2963, 10.1073/pnas.0308607101 vom Brocke, 2006, MEF immortalization to investigate the ins and outs of mutagenesis, Carcinogenesis, 27, 2141, 10.1093/carcin/bgl101 Nedelko, 2009, TP53 mutation signature supports involvement of aristolochic acid in the aetiology of endemic nephropathy-associated tumours, Int. J. Cancer, 124, 987, 10.1002/ijc.24006 Reinbold, 2008, Common tumour p53 mutations in immortalized cells from Hupki mice heterozygous at codon 72, Oncogene, 27, 2788, 10.1038/sj.onc.1210932 Whibley, 2010, Wild-type and Hupki (human p53 knock-in) murine embryonic fibroblasts: p53/ARF pathway disruption in spontaneous escape from senescence, J. Biol. Chem., 285, 11326, 10.1074/jbc.M109.064444 Hollstein, 1994, p53 mutations at A:T base pairs in angiosarcomas of vinyl chloride- exposed factory workers, Carcinogenesis, 15, 1, 10.1093/carcin/15.1.1 Weihrauch, 2000, p53 mutation pattern in hepatocellular carcinoma in workers exposed to vinyl chloride, Cancer, 88, 1030, 10.1002/(SICI)1097-0142(20000301)88:5<1030::AID-CNCR12>3.0.CO;2-4 Rothberg, 2011, An integrated semiconductor device enabling non-optical genome sequencing, Nature, 475, 348, 10.1038/nature10242 Rosenquist, 2011, Genetic loci that affect aristolochic acid-induced nephrotoxicity in the mouse, Am. J. Physiol. Renal Physiol., 300, F1360, 10.1152/ajprenal.00716.2010 Stiborova, 2008, Metabolic activation of carcinogenic aristolochic acid, a risk factor for Balkan endemic nephropathy, Mutat. Res., 658, 55, 10.1016/j.mrrev.2007.07.003