Analysis of Parallel Genetic Algorithm and Parallel Particle Swarm Optimization Algorithm UAV Path Planning on Controller Area Network
Tóm tắt
Từ khóa
Tài liệu tham khảo
Alba, E. (2002). Parallel evolutionary algorithms can achieve super-linear performance. Information Processing Letters,82(1), 7–13. https://doi.org/10.1016/S0020-0190(01)00281-2.
Anderson, J. D. (2008). Introduction to flight (6th ed.). New York: McGraw-Hill.
Cao, Y., Wei, W., Bai, Y., & Qiao, H. (2017). Multi-base multi-UAV cooperative reconnaissance path planning with genetic algorithm. Cluster Computing. https://doi.org/10.1007/s10586-017-1132-9.
Clerc, M. (2005). Particle swarm optimization. Paris: Lavoisier.
Gao, X.-Z., Hou, Z.-X., Zhu, X.-F., Zhang, J.-T., & Chen, X.-Q. (2013). The shortest path planning for manoeuvres of UAV. Acta Polytechnica Hungarica,10(1), 19.
Gong, Y.-J., Chen, W.-N., Zhan, Z.-H., Zhang, J., Li, Y., Zhang, Q., et al. (2015). Distributed evolutionary algorithms and their models: A survey of the state-of-the-art. Applied Soft Computing,34, 286–300. https://doi.org/10.1016/j.asoc.2015.04.061.
Holland, J. H. (1975). Adaptation in natural and artificial systems. The MIT Press. In MIT Press. Cambridge. https://mitpress.mit.edu/books/adaptation-natural-and-artificial-systems. Accessed 18 April 2018
Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In IEEE international conference on neural networks, 1995. proceedings (Vol. 4, pp. 1942–1948). Presented at the IEEE International Conference on Neural Networks, 1995. Proceedings. https://doi.org/10.1109/ICNN.1995.488968
Kennedy, C., & Rogers, J. I. (2015). Virtuous drones? The International Journal of Human Rights,19(2), 211–227. https://doi.org/10.1080/13642987.2014.991217.
Krishnan, P. S., Tiong, S. K., & Koh, J. (2008). Parallel distributed genetic algorithm development based on microcontrollers framework. In 2008 First international conference on distributed framework and applications (pp. 35–40). Presented at the 2008 First International Conference on Distributed Framework and Applications. https://doi.org/10.1109/ICDFMA.2008.4784411
Labonté, G. (2010). Mathematical relations to analyze aircraft performance for trajectory planning. Ottawa: Defense Research and Development.
Lawrenz, W. (Ed.). (2013). CAN system engineering: From theory to practical applications (2nd ed.). London: Springer.
Liu, Y., Zhang, X., Guan, X., & Delahaye, D. (2016). Adaptive sensitivity decision based path planning algorithm for unmanned aerial vehicle with improved particle swarm optimization. Aerospace Science and Technology,58, 92–102. https://doi.org/10.1016/j.ast.2016.08.017.
Özalp, N., & Sahingoz, O. K. (2013). Optimal UAV path planning in a 3D threat environment by using parallel evolutionary algorithms. In 2013 International conference on unmanned aircraft systems (ICUAS) (pp. 308–317). Presented at the 2013 International Conference on Unmanned Aircraft Systems (ICUAS). https://doi.org/10.1109/ICUAS.2013.6564703
Pan, J. H., Zhang, S. B., & Ma, H. (2014). Design of flight control system bus controller of UAV based on double CAN-bus. Applied Mechanics and Materials. https://doi.org/10.4028/www.scientific.net/AMM.479-480.641.
Pehlivanoglu, Y. V. (2012). A new vibrational genetic algorithm enhanced with a Voronoi diagram for path planning of autonomous UAV. Aerospace Science and Technology,16(1), 47–55. https://doi.org/10.1016/j.ast.2011.02.006.
Phung, M. D., Quach, C. H., Dinh, T. H., & Ha, Q. (2017). Enhanced discrete particle swarm optimization path planning for UAV vision-based surface inspection. Automation in Construction,81, 25–33. https://doi.org/10.1016/j.autcon.2017.04.013.
Roberge, V., Tarbouchi, M., & Labonte, G. (2013). Comparison of parallel genetic algorithm and particle swarm optimization for real-time UAV path planning. IEEE Transactions on Industrial Informatics,9(1), 132–141. https://doi.org/10.1109/TII.2012.2198665.
Robert Bosch GmbH. (1991). CAN specification Version 2.0.
Stingu, E., & Lewis, F. L. (2009). A hardware platform for research in helicopter UAV control. Journal of Intelligent and Robotic Systems,54(1–3), 387–406. https://doi.org/10.1007/s10846-008-9271-0.
Tao, J., Zhong, C., Gao, L., & Deng, H. (2016). A study on path planning of unmanned aerial vehicle based on improved genetic algorithm. In 2016 8th international conference on intelligent human–machine systems and cybernetics (IHMSC) (Vol. 2, pp. 392–395). Presented at the 2016 8th International Conference on Intelligent Human–Machine Systems and Cybernetics (IHMSC). https://doi.org/10.1109/IHMSC.2016.182
Wang, G.-G., Chu, H. E., & Mirjalili, S. (2016). Three-dimensional path planning for UCAV using an improved bat algorithm. Aerospace Science and Technology,49, 231–238. https://doi.org/10.1016/j.ast.2015.11.040.