Analysis of Nonlinear and Nonsteady State Hepatic Extraction with the Dispersion Model Using the Finite Difference Method
Tóm tắt
A numerical calculation method for dispersion models was developed to analyze nonlinear and nonsteady hepatic elimination of substances. The finite difference method (FDM), a standard numerical calculation technique, was utilized to solve nonlinear partial differential equations of the dispersion model. Using this method, flexible application of the dispersion model becomes possible, because (i) nonlinear kinetics can be incorporated anywhere, (ii) the input function can be altered arbitrarily, and (iii) the number of compartments can be increased as needed. This method was implemented in a multipurpose nonlinear least-squares fitting computer program, Napp (Numeric Analysis Program for Pharmacokinetics). We simulated dilution curves for several nonlinear two-compartment hepatic models in which the saturable process is assumed in transport or metabolism, and investigated whether they could definitely be discriminated from each other. Preliminary analysis of the rat liver perfusion data of a cyclic pentapeptide, BQ-123, was performed by this method to demonstrate its applicability.
Tài liệu tham khảo
K. S. Pang and M. Rowland. Hepatic clearance of drugs: 1. Theoretical considerations of a well-stirred model and a parallel-tube model. Influence of hepatic blood flow, plasma and blood cell binding and hepatocellular enzymatic activity on hepatic drug clearance. J. Pharmacokin. Biopharm. 5:625–653 (1977).
M. Rowland, L. Z. Benet, and G. G. Graham. Clearance concepts in pharmacokinetics. J. Pharmacokin. Biopharm. 1:123–136 (1973).
L. Bass, S. Keiding, K. Winkler, and N. Tygstrup. Enzymatic elimination of substrates flowing through the intact liver. J. Theoret. Biol. 61:393–409 (1976).
R. W. Brauer, G. F. Leong, P. F. McElory, Jr., and R. J. Holloway. Circulatory pathways in the rat liver as revealed by 32P chromic phosphate colloid uptake in the isolated perfused liver preparation. Am. J. Physiol. 184:593–598 (1956).
D. G. Shand and J. A. Oates. Metabolism of propranolol by rat liver microsomes and its inhibition by phenothiazone and tricyclic antidepressant drugs. Biochem. Pharmacol. 20:1720–1723 (1971).
A. Rane, G. R. Wilkinson, and D. G. Shand. Prediction of hepatic extraction ratio from in vitro measurement of intrinsic clearance. J. Pharmacol. Exp. Ther. 200:420–424 (1977).
R. A. Weisiger. Dissociation from albumin: A potentially rate-limiting step in the clearance of substances by the liver. Proc. Natl. Acad. Sci. U.S. 82:1563–1567 (1985).
W. P. Geng, K. Poon, and K. S. Pang. An understanding of flow-and diffusion-limited vs. carrier-mediated hepatic transport: A simulation study. J. Pharmacokin. Biopharm. 23:347–378 (1995).
B. A. Saville, M. R. Gray, and Y. K. Tam. Models of hepatic drug elimination. Drug Metab. Rev. 24:49–88 (1992).
M. S. Roberts and M. Rowland. Hepatic elimination-dispersion model. J. Pharm. Sci. 74:585–587 (1985).
M. S. Roberts and M. Rowland. A dispersion model of hepatic elimination. 1. Formulation of the model and bolus considerations. J. Pharmacokin. Biopharm. 14:227–260 (1986).
L. Bass, P. Robinson, and A. J. Bracken. Hepatic elimination of flowing substances: The distributed model. J. Theoret. Biol. 72:161–184 (1978).
E. L. Forker and B. Luxon. Hepatic transport kinetics and plasma disappearance curves: Distributed modeling versus conventional approach. Am. J. Physiol. 235:E648–E660 (1978).
C. A. Goresky, W. H. Ziegler, and G. G. Bach. Capillary exchange modeling. Barrier-limited and flow limited distribution. Circ. Res. 27:739–764 (1970).
H. Sato, Y. Sugiyama, Y. Sawada, T. Iga, S. Sakamoto, T. Fuwa, and H. Hanano. Dynamic determination of kinetic parameters for the interaction between polypeptide hormones and cell-surface receptors in the perfused rat liver by the multiple-indicator dilution method. Proc. Natl. Acad. Sci. U.S. 85:8355–8359 (1988).
Y. Sawada, C. S. Patlak, and R. G. Blasberg. Kinetic analysis of cerebrovascular transport based on indicator diffusion technique. Am. J. Physiol. 256:H794–H812 (1989).
Y. Yano, K. Yamaoka, H. Yasui, and T. Nakagawa. Effect of perfusion rate on the local disposition of cefixime in liver perfusion system based on two-compartment dispersion model. Drug Metab. Dispos. 19:1022–1027 (1991).
A. J. Schwab, I. A. De Lannoy, C. A. Goresky, K. Poon, and K. S. Pang. Enalaprilat handling by the kidney: barrier-limited cell entry. Am. J. Physiol. 263:F858–F869 (1992).
C. A. Goresky, G. G. Bach, and C. P. Rose. Effects of saturating metabolic uptake on space profiles and tracer kinetics. Am. J. Physiol. 244:G215–G232 (1983).
M. S. Roberts, J. D. Donaldson, and D. Jackett. Availability predictions by hepatic elimination models for Michaelis-Menten kinetics. J. Pharmacokin. Biopharm. 17:687–719 (1989).
T. A. Bronikowski, C. A. Dawson, J. H. Linehan, and D. A. Rickaby. A mathematical model of indicator extraction by the pulmonary endothelium via saturation kinetics. Math. Biosci. 61:237–266 (1982).
C. M. Malcorps, C. A. Dawson, J. H. Linehan, T. A. Bronikowski, D. A. Rickaby, A. G. Herman, and J. A. Will. Lung serotonin uptake kinetics from indicator-dilution and constant-infusion methods. J. Appl. Physiol. 57:720–730 (1984).
C. A. Poulain, B. A. Finlayson, and J. B. Bassingthwaighte. Efficient numerical methods for nonlinear-facilitated transport and exchange in a blood-tissue exchange unit. Ann. Biomed. Eng. 25:547–564 (1997).
M. S. Roberts, J. D. Donaldson, and M. Rowland. Models of hepatic elimination: Comparison of stochastic models to describe residence time distribution and to predict the influence of drug distribution, enzyme heterogeneity and systemic recycling on hepatic elimination. J. Pharmacokin. Biopharm. 16:41–84 (1988).
L. Bass, M. S. Roberts, and P. J. Robinson. On the relation between extended forms of the sinusoidal perfusion and of the convection-dispersion models of hepatic elimination. J. Theoret. Biol. 126:457–482 (1987).
M. Weiss. A note on the interpretation of tracer dispersion in the liver. J. Theoret. Biol. 184:1–6 (1997).
M. Yasuhara and H. Daiguji (eds.). Suchi-ryutai-rikigaku [Computational fluid dynamics], University of Tokyo Press, Tokyo, 1992, pp. 3–48.
M. Ihara, K. Noguchi, T. Saeki, T. Fukuroda, S. Tsuchiya, S. Kimura, T. Fukami, K. Ishikawa, M. Nishikibe, and M. Yano. Biological profiles of highly potent novel endothelin antagonists selective for the ETA receptor. Life Sci. 50:247–255 (1992).
T. Nakamura, A. Hisaka, Y. Sawasaki, Y. Suzuki, T. Fukami, K. Ishikawa, M. Yano, and Y. Sugiyama. Carrier-mediated active transport of BQ-123, a peptidic endothelin antagonist, into rat hepatocytes. J. Pharmacol. Exp. Ther. 278:564–572 (1996).
H. Shin, Y. Kato, T. Yamada, A. Hisaka, and Y. Sugiyama. Hepatobiliary transport mechanism for the cyclopentapeptide endothelin antagonist BQ-123. Am. J. Physiol. 278:607–613 (1996).
Y. Yano, K. Yamaoka, Y. Aoyama, and H. Tanaka. Two-compartment dispersion model for analysis of organ perfusion system of drugs by fast inverse Laplace transform (FILT). J. Pharmacokin. Biopharm. 17:179–202 (1989).
E. B. Nauman. Residence time distributions in systems governed by the dispersion equation. Chem. Eng. Sci. 36:957–966 (1981).
Y. Yano, K. Yamaoka, and H. Tanaka. A non-linear least squares program, MULTI (FILT), based on fast inverse Laplace transform for microcomputers. Chem. Pharm. Bull. 37:1535–1538 (1989).
R. D. Purves. Accuracy of numerical inversion of Laplace transforms for pharmacokinetic parameter estimation. J. Pharm. Sci. 84:71–74 (1995).
S. L. Garfinkel and M. K. Mahoney. NeXTSTEP programming: step one, object-oriented applications, Spring-Verlag, New York, 1993.
K. Yamaoka, T. Tanigawara, T. Nakagawa, and T. Uno. A pharmacokinetic analysis program (MULTI) for microcomputer. J. Pharmacobiodyn. 4:879–885 (1981).
K. Yamaoka, T. Tanaka, K. Okumura, M. Yasuhara, and R. Hori. An analysis program MULTI (ELS) based on extended nonlinear least squares method for microcomputers. J. Pharmacobiodyn. 9:161–173 (1986).
S. C. Tsao, Y. Sugiyama, Y. Sawada, S. Nagase, T. Iga, and M. Hanano. Effect of albumin on hepatic uptake of warfarin in normal and analbuminemic mutant rats: analysis by multiple indicator dilution method. J. Pharmacokin. Biopharm. 14:51–64 (1986).
H. Akaike. A new look at the statistical model identification. IEEE Trans. Automat. Contr. 19:716–723 (1974).
R. P. J. Oude Elferink, D. K. F. Meijer, F. Kuipers, P. L. M. Jancen, A. K. Groen, and G. M. M. Groothuis. Hepatobiliary secretion of organic compounds; molecular mechanisms of membrane transport. Biochim. Biophys. Acta 1241:215–268 (1995).
B. Zimmerli, J. Valantinas, and P. J. Meier. Multispecificity of Na+-dependent taurocholate uptake in basolateral (sinusoidal) rat liver plasma membrane vesicles. J. Pharmacol. Exp. Ther. 250:301–308 (1989).
M. Yamazaki, H. Suzuki, M. Hanano, T. Tokui, T. Komai, and Y. Sugiyama. Na+-independent multispecific anion transporter mediates active transport of pravastatin into rat liver. Am. J. Physiol. 264:G693–G701 (1993).
D. K. F. Meijer, W. E. M. Mol, M. Müller, and G. Kurz. Carrier-mediated transport in the hepatic distribution and elimination of drugs, with special reference to the category of organic cations. J. Pharmacokin. Biopharm. 18:35–70 (1990).
A. Hisaka, T. Nakamura, and Y. Sugiyama. Analysis of nonlinear hepatic clearance of a cyclopentapeptide, BQ-123, with the multiple indicator dilution method using the dispersion model. Pharm. Res. 16:103–109 (1999).