Analysis of K4ZnAs2 Zintl phased ternary semiconductor compound for optoelectronic application

Results in Materials - Tập 20 - Trang 100469 - 2023
Samuel Wafula1, Robinson Musembi1, Francis Nyongesa1
1Monolith Research Group, Department of Physics, Faculty of Science and Technology, University of Nairobi, P.O. Box 30197, 00100, Nairobi, Kenya

Tài liệu tham khảo

Zhu, 2022, “Optical synaptic devices with ultra-low power consumption for neuromorphic computing,”, Light Sci. Appl., 11, 337, 10.1038/s41377-022-01031-z Li, 2015, Energy efficiency of optoelectronic interfaces in scaled FinFET and SOI CMOS technologies, 18 Xu, 2022, “Silicon-based optoelectronics for general-purpose matrix computation: a review,”, Advanced Photonics, 4, 10.1117/1.AP.4.4.044001 Chaves, 2020, “Bandgap engineering of two-dimensional semiconductor materials,”, NPJ 2D Mater Appl, 4, 29, 10.1038/s41699-020-00162-4 Ali, 2016, “Advances in nanostructured thin film materials for solar cell applications,”, Renew. Sustain. Energy Rev., 59, 726, 10.1016/j.rser.2015.12.268 El Chaar, 2011, “Review of photovoltaic technologies,”, Renew. Sustain. Energy Rev., 15, 2165, 10.1016/j.rser.2011.01.004 Zhang, 2022, Recent progress in emerging organic semiconductors, Adv. Mater., 34, 10.1002/adma.202108701 Kormath Madam Raghupathy, 2018, Database screening of ternary chalcogenides for P-type transparent conductors, Chem. Mater., 30, 6794, 10.1021/acs.chemmater.8b02719 Cameron, 2011, Ternary and higher pnictides; prospects for new materials and applications, Chem. Soc. Rev., 40, 4099, 10.1039/c0cs00132e Wei, 2018, High quantum yield and unusual photoluminescence behaviour in tetrahedral manganese(II) based on hybrid compounds, Inorg. Chem. Front., 5, 2615, 10.1039/C8QI00793D Janka, 2021, “Zintl compounds,”, 1 Gascoin, 2005, Zintl phases as thermoelectric materials: tuned transport properties of the compounds CaxYb1-xZn2Sb2, Adv. Funct. Mater., 15, 1860, 10.1002/adfm.200500043 Corbett, 2000, “Polyanionic clusters and networks of the early p-element metals in the solid state: beyond the Zintl boundary,”, Angew. Chem. Int. Ed., 39, 670, 10.1002/(SICI)1521-3773(20000218)39:4<670::AID-ANIE670>3.0.CO;2-M Qin, 2014, Linear triatomic [ZnBi2]4− in K4ZnBi2, Dalton Trans., 43, 5990, 10.1039/c3dt53419g Eisenmann, 1991, Crystal structure of tetrapotassium diarsenidocadmate, K4CdAs2, Z. für Kristallogr. - Cryst. Mater., 197, 271, 10.1524/zkri.1991.197.3-4.271 Asbrand, 1997, Crystal structure of tetrapotassium diarsenidomercurate(II), K4[HgAs2], Z. Kristallogr. N. Cryst. Struct., 212 Somer, 1990, Crystal structure of tetrapotassium diphosphidoberyllate, K4BeP2, Z. Kristallogr., 192, 263, 10.1524/zkri.1990.192.3-4.263 Eisenmann, 1989, Intermetallische Verbindungen mit HgCl2 -isosteren Anionen: strukturelle und schwingungsspektroskopische Untersuchung von Na4HgP2, K4ZnP2 , K4CdP2 und K4HgP2, Z. Naturforsch. B Chem. Sci., 44, 1228, 10.1515/znb-1989-1015 Prots, 2007, Crystal structure of tetrapotassium diarsenidozincate, K4ZnAs2, Z. Kristallogr. N. Cryst. Struct., 222, 163, 10.1524/ncrs.2007.0067 Giannozzi, 1991, Ab initio calculation of phonon dispersions in semiconductors, Phys. Rev. B, 43, 7231, 10.1103/PhysRevB.43.7231 Giannozzi, 2009, Quantum espresso: a modular and open-source software project for quantum simulations of materials, J. Phys. Condens. Matter, 21, 10.1088/0953-8984/21/39/395502 Ziesche, 1998, Density functionals from LDA to GGA, Comput. Mater. Sci., 11, 122, 10.1016/S0927-0256(97)00206-1 Perdew, 1981, Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B, 23, 5048, 10.1103/PhysRevB.23.5048 Miehlich, 1989, Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr, Chem. Phys. Lett., 157, 200, 10.1016/0009-2614(89)87234-3 Engel, 1993, Exact exchange-only potentials and the virial relation as microscopic criteria for generalized gradient approximations, Phys. Rev. B, 47, 13164, 10.1103/PhysRevB.47.13164 Perdew, 1996 Perdew, 2008, “Restoring the density-gradient expansion for exchange in solids and surfaces,”, Phys. Rev. Lett., 100, 10.1103/PhysRevLett.100.136406 Zhao, 2008, Construction of a generalized gradient approximation by restoring the density-gradient expansion and enforcing a tight Lieb–Oxford bound, J. Chem. Phys., 128, 10.1063/1.2912068 Mbilo, 2022, First principles calculation to investigate the structural, electronic, elastic, mechanical, and optical properties of K2NiP ternary compound, AIP Adv., 12, 10.1063/5.0118809 Monkhorst, 1976, Special points for Brillouin-zone integrations, Phys. Rev. B, 13, 5188, 10.1103/PhysRevB.13.5188 Mbilo, 2023, “First-principles study of properties of X3Sb2Au3 (X = K, Rb) ternary compounds for photovoltaic applications,”, Indian J. Phys., 97, 2355, 10.1007/s12648-022-02547-1 Jain, 2013, Commentary: the Materials Project: a materials genome approach to accelerating materials innovation, Apl. Mater., 1, 10.1063/1.4812323 Khan, 2016, Engel-Vosko generalized gradient approximation within DFT investigations of optoelectronic and thermoelectric properties of copper thioantimonates(III) and thioarsenate(III) for solar-energy conversion, Phys. Status Solidi, 253, 583, 10.1002/pssb.201552435 Mouhat, 2014, Necessary and sufficient elastic stability conditions in various crystal systems, Phys. Rev. B, 90, 10.1103/PhysRevB.90.224104 Tariq, 2015, Structural, electronic and elastic properties of the cubic CaTiO3 under pressure: a DFT study, AIP Adv., 5, 10.1063/1.4926437 Kumar, 2018, “Structural and elastic properties of AIBIIIC 2 VI semiconductors,”, Indian J. Phys., 92, 29, 10.1007/s12648-017-1082-3 Ozdemir Kart, 2010, “Elastic properties of Ni2MnGa from first-principles calculations,”, J. Alloys Compd., 508, 177, 10.1016/j.jallcom.2010.08.039 Sahin, 2012, “First principles studies of elastic, electronic and optical properties of chalcopyrite semiconductor ZnSnP2,”, J. Alloys Compd., 529, 1, 10.1016/j.jallcom.2012.03.046 Bouafia, 2015, Theoretical investigation of structural, elastic, electronic, and thermal properties of KCaF3, K0.5Na0.5CaF3 and NaCaF3 Perovskites, Superlattice. Microst., 82, 525, 10.1016/j.spmi.2015.03.004 Gomis, 2019, Elastic and thermodynamic properties of α-Bi2O3 at high pressures: study of mechanical and dynamical stability, J. Phys. Chem. Solid., 124, 111, 10.1016/j.jpcs.2018.09.002 Fox, 2002, Optical properties of solids, Am. J. Phys., 70, 1269, 10.1119/1.1691372 Khan, 2016, Optoelectronic structure and related transport properties of BiCuSeO-based oxychalcogenides: first principle calculations, Solid State Sci., 58, 86, 10.1016/j.solidstatesciences.2016.05.012