Analysis of K4ZnAs2 Zintl phased ternary semiconductor compound for optoelectronic application
Tài liệu tham khảo
Zhu, 2022, “Optical synaptic devices with ultra-low power consumption for neuromorphic computing,”, Light Sci. Appl., 11, 337, 10.1038/s41377-022-01031-z
Li, 2015, Energy efficiency of optoelectronic interfaces in scaled FinFET and SOI CMOS technologies, 18
Xu, 2022, “Silicon-based optoelectronics for general-purpose matrix computation: a review,”, Advanced Photonics, 4, 10.1117/1.AP.4.4.044001
Chaves, 2020, “Bandgap engineering of two-dimensional semiconductor materials,”, NPJ 2D Mater Appl, 4, 29, 10.1038/s41699-020-00162-4
Ali, 2016, “Advances in nanostructured thin film materials for solar cell applications,”, Renew. Sustain. Energy Rev., 59, 726, 10.1016/j.rser.2015.12.268
El Chaar, 2011, “Review of photovoltaic technologies,”, Renew. Sustain. Energy Rev., 15, 2165, 10.1016/j.rser.2011.01.004
Zhang, 2022, Recent progress in emerging organic semiconductors, Adv. Mater., 34, 10.1002/adma.202108701
Kormath Madam Raghupathy, 2018, Database screening of ternary chalcogenides for P-type transparent conductors, Chem. Mater., 30, 6794, 10.1021/acs.chemmater.8b02719
Cameron, 2011, Ternary and higher pnictides; prospects for new materials and applications, Chem. Soc. Rev., 40, 4099, 10.1039/c0cs00132e
Wei, 2018, High quantum yield and unusual photoluminescence behaviour in tetrahedral manganese(II) based on hybrid compounds, Inorg. Chem. Front., 5, 2615, 10.1039/C8QI00793D
Janka, 2021, “Zintl compounds,”, 1
Gascoin, 2005, Zintl phases as thermoelectric materials: tuned transport properties of the compounds CaxYb1-xZn2Sb2, Adv. Funct. Mater., 15, 1860, 10.1002/adfm.200500043
Corbett, 2000, “Polyanionic clusters and networks of the early p-element metals in the solid state: beyond the Zintl boundary,”, Angew. Chem. Int. Ed., 39, 670, 10.1002/(SICI)1521-3773(20000218)39:4<670::AID-ANIE670>3.0.CO;2-M
Qin, 2014, Linear triatomic [ZnBi2]4− in K4ZnBi2, Dalton Trans., 43, 5990, 10.1039/c3dt53419g
Eisenmann, 1991, Crystal structure of tetrapotassium diarsenidocadmate, K4CdAs2, Z. für Kristallogr. - Cryst. Mater., 197, 271, 10.1524/zkri.1991.197.3-4.271
Asbrand, 1997, Crystal structure of tetrapotassium diarsenidomercurate(II), K4[HgAs2], Z. Kristallogr. N. Cryst. Struct., 212
Somer, 1990, Crystal structure of tetrapotassium diphosphidoberyllate, K4BeP2, Z. Kristallogr., 192, 263, 10.1524/zkri.1990.192.3-4.263
Eisenmann, 1989, Intermetallische Verbindungen mit HgCl2 -isosteren Anionen: strukturelle und schwingungsspektroskopische Untersuchung von Na4HgP2, K4ZnP2 , K4CdP2 und K4HgP2, Z. Naturforsch. B Chem. Sci., 44, 1228, 10.1515/znb-1989-1015
Prots, 2007, Crystal structure of tetrapotassium diarsenidozincate, K4ZnAs2, Z. Kristallogr. N. Cryst. Struct., 222, 163, 10.1524/ncrs.2007.0067
Giannozzi, 1991, Ab initio calculation of phonon dispersions in semiconductors, Phys. Rev. B, 43, 7231, 10.1103/PhysRevB.43.7231
Giannozzi, 2009, Quantum espresso: a modular and open-source software project for quantum simulations of materials, J. Phys. Condens. Matter, 21, 10.1088/0953-8984/21/39/395502
Ziesche, 1998, Density functionals from LDA to GGA, Comput. Mater. Sci., 11, 122, 10.1016/S0927-0256(97)00206-1
Perdew, 1981, Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B, 23, 5048, 10.1103/PhysRevB.23.5048
Miehlich, 1989, Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr, Chem. Phys. Lett., 157, 200, 10.1016/0009-2614(89)87234-3
Engel, 1993, Exact exchange-only potentials and the virial relation as microscopic criteria for generalized gradient approximations, Phys. Rev. B, 47, 13164, 10.1103/PhysRevB.47.13164
Perdew, 1996
Perdew, 2008, “Restoring the density-gradient expansion for exchange in solids and surfaces,”, Phys. Rev. Lett., 100, 10.1103/PhysRevLett.100.136406
Zhao, 2008, Construction of a generalized gradient approximation by restoring the density-gradient expansion and enforcing a tight Lieb–Oxford bound, J. Chem. Phys., 128, 10.1063/1.2912068
Mbilo, 2022, First principles calculation to investigate the structural, electronic, elastic, mechanical, and optical properties of K2NiP ternary compound, AIP Adv., 12, 10.1063/5.0118809
Monkhorst, 1976, Special points for Brillouin-zone integrations, Phys. Rev. B, 13, 5188, 10.1103/PhysRevB.13.5188
Mbilo, 2023, “First-principles study of properties of X3Sb2Au3 (X = K, Rb) ternary compounds for photovoltaic applications,”, Indian J. Phys., 97, 2355, 10.1007/s12648-022-02547-1
Jain, 2013, Commentary: the Materials Project: a materials genome approach to accelerating materials innovation, Apl. Mater., 1, 10.1063/1.4812323
Khan, 2016, Engel-Vosko generalized gradient approximation within DFT investigations of optoelectronic and thermoelectric properties of copper thioantimonates(III) and thioarsenate(III) for solar-energy conversion, Phys. Status Solidi, 253, 583, 10.1002/pssb.201552435
Mouhat, 2014, Necessary and sufficient elastic stability conditions in various crystal systems, Phys. Rev. B, 90, 10.1103/PhysRevB.90.224104
Tariq, 2015, Structural, electronic and elastic properties of the cubic CaTiO3 under pressure: a DFT study, AIP Adv., 5, 10.1063/1.4926437
Kumar, 2018, “Structural and elastic properties of AIBIIIC 2 VI semiconductors,”, Indian J. Phys., 92, 29, 10.1007/s12648-017-1082-3
Ozdemir Kart, 2010, “Elastic properties of Ni2MnGa from first-principles calculations,”, J. Alloys Compd., 508, 177, 10.1016/j.jallcom.2010.08.039
Sahin, 2012, “First principles studies of elastic, electronic and optical properties of chalcopyrite semiconductor ZnSnP2,”, J. Alloys Compd., 529, 1, 10.1016/j.jallcom.2012.03.046
Bouafia, 2015, Theoretical investigation of structural, elastic, electronic, and thermal properties of KCaF3, K0.5Na0.5CaF3 and NaCaF3 Perovskites, Superlattice. Microst., 82, 525, 10.1016/j.spmi.2015.03.004
Gomis, 2019, Elastic and thermodynamic properties of α-Bi2O3 at high pressures: study of mechanical and dynamical stability, J. Phys. Chem. Solid., 124, 111, 10.1016/j.jpcs.2018.09.002
Fox, 2002, Optical properties of solids, Am. J. Phys., 70, 1269, 10.1119/1.1691372
Khan, 2016, Optoelectronic structure and related transport properties of BiCuSeO-based oxychalcogenides: first principle calculations, Solid State Sci., 58, 86, 10.1016/j.solidstatesciences.2016.05.012