Analysis of Fractional Differential Equations

Journal of Mathematical Analysis and Applications - Tập 265 Số 2 - Trang 229-248 - 2002
Kai Diethelm1, Neville J. Ford2
1Institut für Angewandte Mathematik, Technische Universität Braunschweig, Pockelsstr. 14, 38106, Braunschweig, [email protected]
2Department of Mathematics, Chester College, Parkgate Road, Chester, CH1 4BJ, United [email protected]

Tóm tắt

Từ khóa


Tài liệu tham khảo

Caputo, 1967, Linear models of dissipation whose Q is almost frequency independent, II, Geophys. J. Roy. Astronom. Soc., 13, 529, 10.1111/j.1365-246X.1967.tb02303.x

Corduneanu, 1971

Diethelm, 1997, An algorithm for the numerical solution of differential equations of fractional order, Electron. Trans. Numer. Anal., 5, 1

Diethelm, 1997, Generalized compound quadrature formulae for finite-part integrals, IMA J. Numer. Anal., 17, 479, 10.1093/imanum/17.3.479

Diethelm, 1999, On the solution of nonlinear fractional-order differential equations used in the modeling of viscoplasticity, 217

Diethelm, 1997, Numerical solution of fractional order differential equations by extrapolation, Numer. Algorithms, 16, 231, 10.1023/A:1019147432240

Erdélyi, 1955

Gaul, 1991, Damping description involving fractional operators, Mech. Systems Signal Processing, 5, 81, 10.1016/0888-3270(91)90016-X

Glöckle, 1995, A fractional calculus approach to self-similar protein dynamics, Biophys. J., 68, 46, 10.1016/S0006-3495(95)80157-8

Gorenflo, 1996, Fractional oscillations and Mittag–Leffler functions

Gorenflo, 1995, On ultraslow and intermediate processes, 61

Linz, 1985

Mainardi, 1997, Fractional calculus: Some basic problems in continuum and statistical mechanics, 291

Metzler, 1995, Relaxation in filled polymers: A fractional calculus approach, J. Chem. Phys., 103, 7180, 10.1063/1.470346

Oldham, 1974, 111

Samko, 1993

Weissinger, 1952, Zur Theorie und Anwendung des Iterationsverfahrens, Math. Nachr., 8, 193, 10.1002/mana.19520080123