Analysis of Electrochemical Impedance Spectroscopy Data Using the Distribution of Relaxation Times: A Bayesian and Hierarchical Bayesian Approach
Tóm tắt
Từ khóa
Tài liệu tham khảo
Orazem, 2008
Macdonald, 2006, Reflections on the History of Electrochemical Impedance Spectroscopy, Electrochim. Acta, 51, 1376, 10.1016/j.electacta.2005.02.107
Irvine, 1990, Electroceramics: Characterization by Impedance Spectroscopy, Adv. Mater., 2, 132, 10.1002/adma.19900020304
Barsoukov, 2005
Yuan, 2007, AC Impedance Technique in PEM Fuel Cell Diagnosis-A Review, Int. J. Hydrogen Energy, 32, 4365, 10.1016/j.ijhydene.2007.05.036
Jørgensen, 2001, Impedance of Solid Oxide Fuel Cell LSM/YSZ Composite Cathodes, J. Electrochem. Soc., 148, A433, 10.1149/1.1360203
Leonide, 2009, SOFC Modeling and Parameter Identification by Means of Impedance Spectroscopy, ECS Trans., 19, 81, 10.1149/1.3247567
Leonide, 2008, Evaluation and Modeling of the Cell Resistance in Anode-Supported Solid Oxide Fuel Cells, J. Electrochem. Soc., 155, B36, 10.1149/1.2801372
Sonn, 2008, Combined Deconvolution and CNLS Fitting Approach Applied on the Impedance Response of Technical Ni/8YSZ Cermet Electrodes, J. Electrochem. Soc., 155, B675, 10.1149/1.2908860
Chen, 2001, Symmetric Cell Approach and Impedance Spectroscopy of High Power Lithium-Ion Batteries, J. Power Sources, 96, 321, 10.1016/S0378-7753(00)00666-2
Scrosati, 2000, Impedance Spectroscopy Study of PEO-Based Nanocomposite Polymer Electrolytes, J. Electrochem. Soc., 147, 1718, 10.1149/1.1393423
Zhang, 2006, EIS Study on the Formation of Solid Electrolyte Interface in Li-ion Battery, Electrochim. Acta, 51, 1636, 10.1016/j.electacta.2005.02.137
Illig, 2013, Understanding the impedance spectrum of 18650 LiFePO4-cells, J. Power Sources, 239, 670, 10.1016/j.jpowsour.2012.12.020
Pejcic, 2006, Impedance Spectroscopy: Over 35 Years of Electrochemical Sensor Optimization, Electrochim. Acta, 51, 6217, 10.1016/j.electacta.2006.04.025
Katz, 2003, Probing Biomolecular Interactions at Conductive and Semiconductive Surfaces by Impedance Spectroscopy: Routes to Impedimetric Immunosensors, DNA-Sensors, and Enzyme Biosensors, Electroanalysis, 15, 913, 10.1002/elan.200390114
Bardea, 1999, Sensing and Amplification of Oligonucleotide-DNA Interactions by Means of Impedance Spectroscopy: a Route to a Tay-Sachs Sensor, Chem. Commun., 21, 10.1039/a808319c
Kötz, 2006, Temperature Behavior and Impedance Fundamentals of Supercapacitors, J. Power Sources, 154, 550, 10.1016/j.jpowsour.2005.10.048
Hurt, 1986, Distributed Circuit Elements in Impedance Spectroscopy: A Unified Treatment of Conductive and Dielectric Systems, Solid State Ionics, 20, 111, 10.1016/0167-2738(86)90018-4
Hirose, 1996, Impedance Spectroscopy of Undoped BaTiO3 Ceramics, J. Am. Ceram. Soc., 79, 1633, 10.1111/j.1151-2916.1996.tb08775.x
Mansfeld, 1995, Use of Electrochemical Impedance Spectroscopy for the Study of Corrosion Protection by Polymer Coatings, J. Appl. Electrochem., 25, 187, 10.1007/BF00262955
Liu, 2003, An Electrochemical Impedance Spectroscopy Study of the Corrosion Behaviour of PVD Coated Steels in 0.5N NaCl Aqueous Solution: Part II.: EIS Interpretation of Corrosion Behaviour, Corros. Sci., 45, 1257, 10.1016/S0010-938X(02)00214-7
Ervin, 2005, Alternating Current Impedance Imaging of Membrane Pores Using Scanning Electrochemical Microscopy, Anal. Chem., 77, 5564, 10.1021/ac050453s
Ervin, 2006, Alternating Current Impedance Imaging of High-Resistance Membrane Pores Using a Scanning Electrochemical Microscope. Application of Membrane Electrical Shunts To Increase Measurement Sensitivity and Image Contrast, Anal. Chem., 78, 6535, 10.1021/ac060577k
Gómez, 2001, Microfluidic Biochip for Impedance Spectroscopy of Biological Species, Biomed. Microdevices, 3, 201, 10.1023/A:1011403112850
Lisdat, 2008, The Use of Electrochemical Impedance Spectroscopy for Biosensing, Anal. Bioanal. Chem., 391, 1555, 10.1007/s00216-008-1970-7
Lai, 2005, Impedance Spectroscopy as a Tool for Chemical and Electrochemical Analysis of Mixed Conductors: A Case Study of Ceria, J. Am. Ceram. Soc., 88, 2979, 10.1111/j.1551-2916.2005.00740.x
Macdonald, 2009, Comparison of Some Random-Barrier, Continuous-Time Random-Walk, and Other Models for the Analysis of Wide-Range Frequency Response of Ion-Conducting Materials, J. Phys. Chem. B, 113, 9175, 10.1021/jp9026095
Macdonald, 2009, Comments on the Electric Modulus Formalism Model and Superior Alternatives to it for the Analysis of the Frequency Response of Ionic Conductors, J. Phys. Chem. Solids, 70, 546, 10.1016/j.jpcs.2008.12.012
Macdonald, 2010, Utility of Continuum Diffusion Models for Analyzing Mobile-ion Immittance Data: Electrode Polarization, Bulk, and Generation–Recombination Effects, J. Phys.: Condens. Matter, 22, 495101
Macdonald, 2013, Utility and Importance of Poisson-Nernst-Planck Immittance-Spectroscopy Fitting Models, J. Phys. Chem. C, 117, 23433, 10.1021/jp403510y
Ciucci, 2011, Surface Reaction and Transport in Mixed Conductors with Electrochemically-Active Surfaces: a 2-D Numerical Study of Ceria, Phys. Chem. Chem. Phys., 13, 2121, 10.1039/C0CP01219J
Chen, 2014, Modeling the Impedance Response of Mixed-Conducting Thin Film Electrodes, Phys. Chem. Chem. Phys., 16, 11573, 10.1039/c4cp01285b
Jamnik, 1999, A Powerful Electrical Network Model for the Impedance of Mixed Conductors, Electrochim. Acta, 44, 4139, 10.1016/S0013-4686(99)00128-0
Jamnik, 2001, Generalised Equivalent Circuits for Mass and Charge Transport: Chemical Capacitance and its Implications, Phys. Chem. Chem. Phys., 3, 1668, 10.1039/b100180i
Wang, 2006, Characteristics of High Efficiency Dye-Sensitized Solar Cells, J. Phys. Chem. B, 110, 25210, 10.1021/jp064256o
Fabregat-Santiago, 2011, Characterization of Nanostructured Hybrid and Organic Solar Cells by Impedance Spectroscopy, Phys. Chem. Chem. Phys., 13, 9083, 10.1039/c0cp02249g
Bisquert, 2001, Theory of the Impedance of Electron Diffusion and Recombination in a Thin Layer, J. Phys. Chem. B, 106, 325, 10.1021/jp011941g
Jefferys, 1992, Ockham's Razor and Bayesian Analysis, American Scientist, 80, 64
Schichlein, 2002, Deconvolution of Electrochemical Impedance Spectra for the Identification of Electrode Reaction Mechanisms in Solid Oxide Fuel Cells, J. Appl. Electrochem., 32, 875, 10.1023/A:1020599525160
Schmidt, 2013, The Distribution of Relaxation Times as Basis for Generalized Time-Domain Models for Li-ion Batteries, J. Power Sources, 221, 70, 10.1016/j.jpowsour.2012.07.100
Tuncer, 2001, On Dielectric Data Analysis. Using the Monte Carlo Method to Obtain Relaxation Time Distribution and Comparing Non-Linear Spectral Function Fits, IEEE Trans. Dielectr. Electr. Insul., 8, 310, 10.1109/94.933337
Tuncer, 2006, Comparison of Methods for Estimating Continuous Distributions of Relaxation Times, J. Appl. Phys., 99, 074106, 10.1063/1.2188053
Orazem, 2002, Extension of the Measurement Model Approach for Deconvolution of Underlying Distributions for Impedance Measurements, Electrochim. Acta, 47, 2027, 10.1016/S0013-4686(02)00065-8
Sumi, 2012, AC Impedance Characteristics for Anode-Supported Microtubular Solid Oxide Fuel Cells, Electrochim. Acta, 67, 159, 10.1016/j.electacta.2012.02.021
Boukamp, 2015, Fourier Transform Distribution Function of Relaxation Times; Application and Limitations, Electrochim. Acta, 154, 35, 10.1016/j.electacta.2014.12.059
Renaut, 2013, Stability and Error Analysis of the Polarization Estimation Inverse Problem for Microbial Fuel Cells, Inverse Prob., 29, 045006, 10.1088/0266-5611/29/4/045006
Davies, 2012, Wavelet Regularization and the Continuous Relaxation Spectrum, Journal of Non-Newtonian Fluid Mechanics, 189–190, 19, 10.1016/j.jnnfm.2012.09.002
Hershkovitz, 2011, Harnessing Evolutionary Programming for Impedance Spectroscopy Analysis: A Case Study of Mixed Ionic-Electronic Conductors, Solid State Ionics, 188, 104, 10.1016/j.ssi.2010.10.004
Hershkovitz, 2011, ISGP: Impedance Spectroscopy Analysis Using Evolutionary Programming Procedure, ECS Trans., 33, 67, 10.1149/1.3589186
Tesler, 2010, Analyzing Results of Impedance Spectroscopy Using Novel Evolutionary Programming Techniques, J. Electroceram., 24, 245, 10.1007/s10832-009-9565-z
Saccoccio, 2014, Optimal Regularization in Distribution of Relaxation Times applied to Electrochemical Impedance Spectroscopy: Ridge and Lasso Regression Methods - A Theoretical and Experimental Study, Electrochim. Acta, 147, 470, 10.1016/j.electacta.2014.09.058
Zhang, 2015, Enhanced Oxygen Reduction Activity and Solid Oxide Fuel Cell Performance with a Nanoparticles-Loaded Cathode, Nano Lett.
Hörlin, 1993, Maximum Entropy in Impedance Spectroscopy of Non-Inductive Systems, Solid State Ionics, 67, 85, 10.1016/0167-2738(93)90313-R
Hörlin, 1998, Deconvolution and Maximum Entropy in Impedance Spectroscopy of Noninductive systems, Solid State Ionics, 107, 241, 10.1016/S0167-2738(98)00008-3
vanderNoot, 1995, Maximum Entropy Deconvolution of Dielectric and Impedance Data, J. Electroanal. Chem., 386, 57, 10.1016/0022-0728(94)03801-9
Oz, 2014, Electrochemical Impedance Spectroscopy of Supercapacitors: A Novel Analysis Approach Using Evolutionary Programming, AIP Conf. Proc., 1627, 76, 10.1063/1.4901661
Macutkevic, 2004, Determination of the Distribution of the Relaxation Times from Dielectric Spectra, Nonlinear Anal. Model. Control, 9, 75, 10.15388/NA.2004.9.1.15172
Dion, 1999, The Use of Regularization Methods in the Deconvolution of Underlying Distributions in Electrochemical Processes, J. Electroanal. Chem., 475, 28, 10.1016/S0022-0728(99)00334-4
Winterhalter, 1997, An Improved Analysis of Admittance Data for High Resistivity Materials by a Nonlinear Regularization Method, J. Appl. Phys., 82, 5488, 10.1063/1.365577
Winterhalter, 1999, Analysis of Admittance Data: Comparison of a Parametric and a Nonparametric Method, J. Comput. Phys., 153, 139, 10.1006/jcph.1999.6269
Macdonald, 2000, Comparison of Parametric and Nonparametric Methods for the Analysis and Inversion of Immittance Data: Critique of Earlier Work, J. Comput. Phys., 157, 280, 10.1006/jcph.1999.6378
Macdonald, 2000, On Relaxation-Spectrum Estimation for Decades of Data: Accuracy and Sampling-Localization Considerations, Inverse Prob., 16, 1561, 10.1088/0266-5611/16/5/324
Xiao, 2014, Releasing Metal Catalysts via Phase Transition: (NiO)0.05-(SrTi0.8Nb0.2O3)0.95 as a Redox Stable Anode Material for Solid Oxide Fuel Cells, ACS Appl. Mater. Interfaces, 6, 19990, 10.1021/am5055417
Zhang, 2015, In-Situ Quantification of Solid oxide Fuel Cell Electrode Microstructure by Electrochemical Impedance Spectroscopy, J. Power Sources, 277, 277, 10.1016/j.jpowsour.2014.11.123
Gelman, 2013
Calvetti, 2010, 33
Cheney, 1982
Calvetti, 2007
Calvetti, 2008, Hypermodels in the Bayesian imaging framework, Inverse Prob., 24, 034013, 10.1088/0266-5611/24/3/034013
Daniela, 2007, A Gaussian hypermodel to recover blocky objects, Inverse Prob., 23, 733, 10.1088/0266-5611/23/2/016
MacKay, 1996, Hyperparameters: Optimize, or Integrate Out?, 43
Bengio, 2000, Gradient-Based Optimization of Hyperparameters, Neural Comput., 12, 1889, 10.1162/089976600300015187
Ciucci, 2011, Reducing Error and Measurement Time in Impedance Spectroscopy using Model Based Optimal Experimental Design, Electrochim. Acta, 56, 5416, 10.1016/j.electacta.2011.02.098
Ciucci, 2013, Revisiting Parameter Identification in Electrochemical Impedance Spectroscopy: Weighted Least Squares and Optimal Experimental Design, Electrochim. Acta, 87, 532, 10.1016/j.electacta.2012.09.073