Analysis of Electrochemical Impedance Spectroscopy Data Using the Distribution of Relaxation Times: A Bayesian and Hierarchical Bayesian Approach

Electrochimica Acta - Tập 167 - Trang 439-454 - 2015
Francesco Ciucci1,2, Chi Chen2
1Department of Chemical and Biomolecular Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
2Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Macdonald, 1992, Impedance Spectroscopy, Ann. Biomed. Eng., 20, 289, 10.1007/BF02368532

Orazem, 2008

Macdonald, 2006, Reflections on the History of Electrochemical Impedance Spectroscopy, Electrochim. Acta, 51, 1376, 10.1016/j.electacta.2005.02.107

Irvine, 1990, Electroceramics: Characterization by Impedance Spectroscopy, Adv. Mater., 2, 132, 10.1002/adma.19900020304

Barsoukov, 2005

Yuan, 2007, AC Impedance Technique in PEM Fuel Cell Diagnosis-A Review, Int. J. Hydrogen Energy, 32, 4365, 10.1016/j.ijhydene.2007.05.036

Jørgensen, 2001, Impedance of Solid Oxide Fuel Cell LSM/YSZ Composite Cathodes, J. Electrochem. Soc., 148, A433, 10.1149/1.1360203

Leonide, 2009, SOFC Modeling and Parameter Identification by Means of Impedance Spectroscopy, ECS Trans., 19, 81, 10.1149/1.3247567

Leonide, 2008, Evaluation and Modeling of the Cell Resistance in Anode-Supported Solid Oxide Fuel Cells, J. Electrochem. Soc., 155, B36, 10.1149/1.2801372

Sonn, 2008, Combined Deconvolution and CNLS Fitting Approach Applied on the Impedance Response of Technical Ni/8YSZ Cermet Electrodes, J. Electrochem. Soc., 155, B675, 10.1149/1.2908860

Chen, 2001, Symmetric Cell Approach and Impedance Spectroscopy of High Power Lithium-Ion Batteries, J. Power Sources, 96, 321, 10.1016/S0378-7753(00)00666-2

Scrosati, 2000, Impedance Spectroscopy Study of PEO-Based Nanocomposite Polymer Electrolytes, J. Electrochem. Soc., 147, 1718, 10.1149/1.1393423

Zhang, 2006, EIS Study on the Formation of Solid Electrolyte Interface in Li-ion Battery, Electrochim. Acta, 51, 1636, 10.1016/j.electacta.2005.02.137

Illig, 2013, Understanding the impedance spectrum of 18650 LiFePO4-cells, J. Power Sources, 239, 670, 10.1016/j.jpowsour.2012.12.020

Pejcic, 2006, Impedance Spectroscopy: Over 35 Years of Electrochemical Sensor Optimization, Electrochim. Acta, 51, 6217, 10.1016/j.electacta.2006.04.025

Katz, 2003, Probing Biomolecular Interactions at Conductive and Semiconductive Surfaces by Impedance Spectroscopy: Routes to Impedimetric Immunosensors, DNA-Sensors, and Enzyme Biosensors, Electroanalysis, 15, 913, 10.1002/elan.200390114

Bardea, 1999, Sensing and Amplification of Oligonucleotide-DNA Interactions by Means of Impedance Spectroscopy: a Route to a Tay-Sachs Sensor, Chem. Commun., 21, 10.1039/a808319c

Kötz, 2006, Temperature Behavior and Impedance Fundamentals of Supercapacitors, J. Power Sources, 154, 550, 10.1016/j.jpowsour.2005.10.048

Hurt, 1986, Distributed Circuit Elements in Impedance Spectroscopy: A Unified Treatment of Conductive and Dielectric Systems, Solid State Ionics, 20, 111, 10.1016/0167-2738(86)90018-4

Hirose, 1996, Impedance Spectroscopy of Undoped BaTiO3 Ceramics, J. Am. Ceram. Soc., 79, 1633, 10.1111/j.1151-2916.1996.tb08775.x

Mansfeld, 1995, Use of Electrochemical Impedance Spectroscopy for the Study of Corrosion Protection by Polymer Coatings, J. Appl. Electrochem., 25, 187, 10.1007/BF00262955

Liu, 2003, An Electrochemical Impedance Spectroscopy Study of the Corrosion Behaviour of PVD Coated Steels in 0.5N NaCl Aqueous Solution: Part II.: EIS Interpretation of Corrosion Behaviour, Corros. Sci., 45, 1257, 10.1016/S0010-938X(02)00214-7

Ervin, 2005, Alternating Current Impedance Imaging of Membrane Pores Using Scanning Electrochemical Microscopy, Anal. Chem., 77, 5564, 10.1021/ac050453s

Ervin, 2006, Alternating Current Impedance Imaging of High-Resistance Membrane Pores Using a Scanning Electrochemical Microscope. Application of Membrane Electrical Shunts To Increase Measurement Sensitivity and Image Contrast, Anal. Chem., 78, 6535, 10.1021/ac060577k

Gómez, 2001, Microfluidic Biochip for Impedance Spectroscopy of Biological Species, Biomed. Microdevices, 3, 201, 10.1023/A:1011403112850

Lisdat, 2008, The Use of Electrochemical Impedance Spectroscopy for Biosensing, Anal. Bioanal. Chem., 391, 1555, 10.1007/s00216-008-1970-7

Lai, 2005, Impedance Spectroscopy as a Tool for Chemical and Electrochemical Analysis of Mixed Conductors: A Case Study of Ceria, J. Am. Ceram. Soc., 88, 2979, 10.1111/j.1551-2916.2005.00740.x

Macdonald, 2009, Comparison of Some Random-Barrier, Continuous-Time Random-Walk, and Other Models for the Analysis of Wide-Range Frequency Response of Ion-Conducting Materials, J. Phys. Chem. B, 113, 9175, 10.1021/jp9026095

Macdonald, 2009, Comments on the Electric Modulus Formalism Model and Superior Alternatives to it for the Analysis of the Frequency Response of Ionic Conductors, J. Phys. Chem. Solids, 70, 546, 10.1016/j.jpcs.2008.12.012

Macdonald, 2010, Utility of Continuum Diffusion Models for Analyzing Mobile-ion Immittance Data: Electrode Polarization, Bulk, and Generation–Recombination Effects, J. Phys.: Condens. Matter, 22, 495101

Macdonald, 2013, Utility and Importance of Poisson-Nernst-Planck Immittance-Spectroscopy Fitting Models, J. Phys. Chem. C, 117, 23433, 10.1021/jp403510y

Ciucci, 2011, Surface Reaction and Transport in Mixed Conductors with Electrochemically-Active Surfaces: a 2-D Numerical Study of Ceria, Phys. Chem. Chem. Phys., 13, 2121, 10.1039/C0CP01219J

Chen, 2014, Modeling the Impedance Response of Mixed-Conducting Thin Film Electrodes, Phys. Chem. Chem. Phys., 16, 11573, 10.1039/c4cp01285b

Jamnik, 1999, A Powerful Electrical Network Model for the Impedance of Mixed Conductors, Electrochim. Acta, 44, 4139, 10.1016/S0013-4686(99)00128-0

Jamnik, 2001, Generalised Equivalent Circuits for Mass and Charge Transport: Chemical Capacitance and its Implications, Phys. Chem. Chem. Phys., 3, 1668, 10.1039/b100180i

Wang, 2006, Characteristics of High Efficiency Dye-Sensitized Solar Cells, J. Phys. Chem. B, 110, 25210, 10.1021/jp064256o

Fabregat-Santiago, 2011, Characterization of Nanostructured Hybrid and Organic Solar Cells by Impedance Spectroscopy, Phys. Chem. Chem. Phys., 13, 9083, 10.1039/c0cp02249g

Bisquert, 2001, Theory of the Impedance of Electron Diffusion and Recombination in a Thin Layer, J. Phys. Chem. B, 106, 325, 10.1021/jp011941g

Sober, 1981, The Principle of Parsimony, Brit. J. Phil. Sci., 32, 145, 10.1093/bjps/32.2.145

Jefferys, 1992, Ockham's Razor and Bayesian Analysis, American Scientist, 80, 64

Schichlein, 2002, Deconvolution of Electrochemical Impedance Spectra for the Identification of Electrode Reaction Mechanisms in Solid Oxide Fuel Cells, J. Appl. Electrochem., 32, 875, 10.1023/A:1020599525160

Schmidt, 2013, The Distribution of Relaxation Times as Basis for Generalized Time-Domain Models for Li-ion Batteries, J. Power Sources, 221, 70, 10.1016/j.jpowsour.2012.07.100

Tuncer, 2001, On Dielectric Data Analysis. Using the Monte Carlo Method to Obtain Relaxation Time Distribution and Comparing Non-Linear Spectral Function Fits, IEEE Trans. Dielectr. Electr. Insul., 8, 310, 10.1109/94.933337

Tuncer, 2006, Comparison of Methods for Estimating Continuous Distributions of Relaxation Times, J. Appl. Phys., 99, 074106, 10.1063/1.2188053

Orazem, 2002, Extension of the Measurement Model Approach for Deconvolution of Underlying Distributions for Impedance Measurements, Electrochim. Acta, 47, 2027, 10.1016/S0013-4686(02)00065-8

Sumi, 2012, AC Impedance Characteristics for Anode-Supported Microtubular Solid Oxide Fuel Cells, Electrochim. Acta, 67, 159, 10.1016/j.electacta.2012.02.021

Boukamp, 2015, Fourier Transform Distribution Function of Relaxation Times; Application and Limitations, Electrochim. Acta, 154, 35, 10.1016/j.electacta.2014.12.059

Renaut, 2013, Stability and Error Analysis of the Polarization Estimation Inverse Problem for Microbial Fuel Cells, Inverse Prob., 29, 045006, 10.1088/0266-5611/29/4/045006

Davies, 2012, Wavelet Regularization and the Continuous Relaxation Spectrum, Journal of Non-Newtonian Fluid Mechanics, 189–190, 19, 10.1016/j.jnnfm.2012.09.002

Hershkovitz, 2011, Harnessing Evolutionary Programming for Impedance Spectroscopy Analysis: A Case Study of Mixed Ionic-Electronic Conductors, Solid State Ionics, 188, 104, 10.1016/j.ssi.2010.10.004

Hershkovitz, 2011, ISGP: Impedance Spectroscopy Analysis Using Evolutionary Programming Procedure, ECS Trans., 33, 67, 10.1149/1.3589186

Tesler, 2010, Analyzing Results of Impedance Spectroscopy Using Novel Evolutionary Programming Techniques, J. Electroceram., 24, 245, 10.1007/s10832-009-9565-z

Saccoccio, 2014, Optimal Regularization in Distribution of Relaxation Times applied to Electrochemical Impedance Spectroscopy: Ridge and Lasso Regression Methods - A Theoretical and Experimental Study, Electrochim. Acta, 147, 470, 10.1016/j.electacta.2014.09.058

Zhang, 2015, Enhanced Oxygen Reduction Activity and Solid Oxide Fuel Cell Performance with a Nanoparticles-Loaded Cathode, Nano Lett.

Hörlin, 1993, Maximum Entropy in Impedance Spectroscopy of Non-Inductive Systems, Solid State Ionics, 67, 85, 10.1016/0167-2738(93)90313-R

Hörlin, 1998, Deconvolution and Maximum Entropy in Impedance Spectroscopy of Noninductive systems, Solid State Ionics, 107, 241, 10.1016/S0167-2738(98)00008-3

vanderNoot, 1995, Maximum Entropy Deconvolution of Dielectric and Impedance Data, J. Electroanal. Chem., 386, 57, 10.1016/0022-0728(94)03801-9

Oz, 2014, Electrochemical Impedance Spectroscopy of Supercapacitors: A Novel Analysis Approach Using Evolutionary Programming, AIP Conf. Proc., 1627, 76, 10.1063/1.4901661

Macutkevic, 2004, Determination of the Distribution of the Relaxation Times from Dielectric Spectra, Nonlinear Anal. Model. Control, 9, 75, 10.15388/NA.2004.9.1.15172

Dion, 1999, The Use of Regularization Methods in the Deconvolution of Underlying Distributions in Electrochemical Processes, J. Electroanal. Chem., 475, 28, 10.1016/S0022-0728(99)00334-4

Winterhalter, 1997, An Improved Analysis of Admittance Data for High Resistivity Materials by a Nonlinear Regularization Method, J. Appl. Phys., 82, 5488, 10.1063/1.365577

Winterhalter, 1999, Analysis of Admittance Data: Comparison of a Parametric and a Nonparametric Method, J. Comput. Phys., 153, 139, 10.1006/jcph.1999.6269

Macdonald, 2000, Comparison of Parametric and Nonparametric Methods for the Analysis and Inversion of Immittance Data: Critique of Earlier Work, J. Comput. Phys., 157, 280, 10.1006/jcph.1999.6378

Macdonald, 2000, On Relaxation-Spectrum Estimation for Decades of Data: Accuracy and Sampling-Localization Considerations, Inverse Prob., 16, 1561, 10.1088/0266-5611/16/5/324

Xiao, 2014, Releasing Metal Catalysts via Phase Transition: (NiO)0.05-(SrTi0.8Nb0.2O3)0.95 as a Redox Stable Anode Material for Solid Oxide Fuel Cells, ACS Appl. Mater. Interfaces, 6, 19990, 10.1021/am5055417

Zhang, 2015, In-Situ Quantification of Solid oxide Fuel Cell Electrode Microstructure by Electrochemical Impedance Spectroscopy, J. Power Sources, 277, 277, 10.1016/j.jpowsour.2014.11.123

Gelman, 2013

Calvetti, 2010, 33

Cheney, 1982

Calvetti, 2007

Calvetti, 2008, Hypermodels in the Bayesian imaging framework, Inverse Prob., 24, 034013, 10.1088/0266-5611/24/3/034013

Park, 2008, The Bayesian Lasso, JASA, 103, 681, 10.1198/016214508000000337

Daniela, 2007, A Gaussian hypermodel to recover blocky objects, Inverse Prob., 23, 733, 10.1088/0266-5611/23/2/016

MacKay, 1996, Hyperparameters: Optimize, or Integrate Out?, 43

Bengio, 2000, Gradient-Based Optimization of Hyperparameters, Neural Comput., 12, 1889, 10.1162/089976600300015187

Ciucci, 2011, Reducing Error and Measurement Time in Impedance Spectroscopy using Model Based Optimal Experimental Design, Electrochim. Acta, 56, 5416, 10.1016/j.electacta.2011.02.098

Ciucci, 2013, Revisiting Parameter Identification in Electrochemical Impedance Spectroscopy: Weighted Least Squares and Optimal Experimental Design, Electrochim. Acta, 87, 532, 10.1016/j.electacta.2012.09.073

Buhmann, 2000, Radial Basis Functions, Acta Numer., 9, 1, 10.1017/S0962492900000015

Fuoss, 1941, Electrical Properties of Solids. VIII. Dipole Moments in Polyvinyl Chloride-Diphenyl Systems, JACS, 63, 385, 10.1021/ja01847a013