Analysis of 4-Dimensional Caputo–Fabrizio Derivative for Chaotic Laser System: Boundedness, Dynamics of the System, Existence and Uniqueness of Solutions

Fei Li1, Haci Mehmet Baskonus2, Carlo Cattani3, Wei Gao4
1Department of Scientific Research, Yunnan Normal University, Kunming, China
2Department of Mathematics and Science Education, Harran University, Sanliurfa, Turkey
3Engineering School (DEIM), University of Tuscia, Largo Dell Universita, Viterbo, Italy
4School of Information Science and Technology, Yunnan Normal University, Yunnan, China

Tóm tắt

The study of the complex model associated with chaotic models is always the most complicated and fundamental in the current scientific environment. The primary goal of the current paper is to provide an illustration of the fundamental theory while analysing dynamical systems and validating the chaotic behaviour of the Lorenz–Haken (LH) equations, a system of fractional differential equations. The LH equations are used to describe the 4D chaotic laser. The Adams–Bashforth numerical method is used to extract the numerical solutions projected model. The classical model introduces the bifurcation of the parameter linked with the system. The system's uniqueness and existence are confirmed using the fixed-point hypothesis with the Caputo–Fabrizio fractional operator, followed by boundedness and dynamical analysis. Furthermore, the chaotic character of the numerical solutions with different orders obtained at different beginning circumstances is presented.

Tài liệu tham khảo

A. Atangana, K. M. Owolabi, New numerical approach for fractional differential equations, Math. Model. Nat. Phenom., 13 (2018), DOI: https://doi.org/10.1051/mmnp/2018010. Akinyemi, L.; Iyiola, O.S.: A reliable technique to study nonlinear time-fractional coupled Korteweg-de Vries equations. Adv. Differ. Equ. 2020, 1–27 (2020). https://doi.org/10.1186/s13662-020-02625-w Akinyemi, L.; Veeresha, P.; Ajibola, S.O.: Numerical simulation for coupled nonlinear Schrödinger–Korteweg–de Vries and Maccari systems of equations. Mod. Phys. Lett. B 35(20), 2150339 (2021) Animasaun, I.L.; Shah, N.; Wakif, A.; Mahanthesh, B.; Sivaraj, R.; Koriko, O.K.: Ratio of momentum diffusivity to thermal diffusivity: introduction, meta-analysis, and scrutinization. CRC. USA (2022). https://doi.org/10.1201/9781003217374 Atangana, A.: Derivative with a new parameter: theory, methods and applications. Academic Press, New York (2016) Atangana, A.; Alqahtani, R.T.: Numerical approximation of the space-time Caputo-Fabrizio fractional derivative and application to groundwater pollution equation. Adv. Differ. Equ. 1, 1–13 (2016) Atangana, A.; Nieto, J.J.: Numerical solution for the model of RLC circuit via the fractional derivative without singular kernel. Adv. Mech. Eng. 7, 1–6 (2015) Banerjee, S.; Saha, P.; Chowdhury, A.R.: Chaotic aspects of lasers with host-induced nonlinearity and its control. Phys. Lett. A 291, 103–114 (2001) Baskonus, H.M.; Mekkaoui, T.; Hammouch, Z.; Bulut, H.: Active control of a chaotic fractional order economic system. Entropy 17(8), 5771–5783 (2015) Bhalekar, S.; Daftardar-Gejji, V.; Baleanu, D.; Magin, R.: Transient Chaos in fractional Bloch equations. Comput. Math. Appl. 64, 3367–3376 (2012) C. Baishya, P. Veeresha, Laguerre polynomial-based operational matrix of integration for solving fractional differential equations with non-singular kernel, Proceeding of the Royal Society A 477 (2253) (2021). Caputo, M.: Elasticita e Dissipazione. Zanichelli, Bologna (1969) Caputo, M.; Fabrizio, M.: A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1(2), 73–85 (2015) Caputo, M.; Fabrizio, M.: Applications of new time and spatial fractional derivatives with exponential kernels. Progr. Fract. Differ. Appl. 2, 1–11 (2016) Daftardar-Gejji, V.; Bhalekar, S.; Gade, P.: Dynamics of fractional-ordered Chen system with delay. Pramana- J. Phy. 79(1), 61–69 (2012) E. Ilhan, P. Veeresha, H. M. Baskonus, Fractional approach for a mathematical model of atmospheric dynamics of CO2 gas with an efficient method, Chaos Solitons Fractals 152 (2021). E. N. Lorenz, The Essence of Chaos, University of Washington Press, Seattle (1993). Goufo, E.F.D.: Application of the Caputo-Fabrizio fractional derivative without singular kernel to korteweg-de vries-burgers equation. Math. Modell. Anal. 21, 188–198 (2016) Haken, H.: Analogy between higher instabilities in fluids and lasers. Phys. Lett. A 53, 77–78 (1975) Hamid, M.; Usman, M.; Wang, W.; Tian, Z.: A stable computational approach to analyzing semi-relativistic behaviour of fractional evolutionary problems. Numer. Methods Partial Differ. Equ. 38(2), 122–136 (2022) Hammouch, Z.; Mekkaoui, T.: Chaos synchronization of a fractional nonautonomous system, Nonauton. Dyn. Syst. 1, 61–71 (2014) Hammouch, Z.; Mekkaoui, T.: Circuit design and simulation for the fractional-order chaotic behaviour in a new dynamical system. Complex Intell. Syst. 4, 251–260 (2018) Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific Publishing Company, Singapore (2000) I. Grigorenko, E. Grigorenko, Chaotic dynamics of the fractional Lorenz system, Phys. Rev. Lett. 91 (3) (2003), DOI: https://doi.org/10.1103/PhysRevLett.91.034101. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006) Laoye, J.A.; Vincent, U.E.; Kareem, S.O.: Chaos control of 4D chaotic systems using recursive backstepping nonlinear controller. Chaos, Solitons Fractals 39(1), 356–362 (2009) Li, H.L.; Zhang, L.; Hu, C.; Jiang, Y.-L.; Teng, Z.: Dynamical analysis of a fractional-order predator-prey model incorporating a prey refuge. J. Appl. Math. Comput. 54(1–2), 435–449 (2017) Liouville, J.: Memoire sur quelques questions de geometrie et de mecanique, et sur un nouveau genre de calcul pour resoudre ces questions. J. Ecole Polytech. 13, 1–69 (1832) Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963) Losada, J.; Nieto, J.J.: Properties of the new fractional derivative without singular Kernel. Progr. Fract. Differ. Appl. 1, 87–92 (2015) Lu, J.; Zhu, L.; Gao, W.: Remarks on bipolar cubic fuzzy graphs and its chemical applications. Int. J. Math. Comput. Eng. 1(1), 1–9 (2023). https://doi.org/10.2478/ijmce-2023-0001 M. Hamid, M. Usman, R. U. Haq, Z. Tian, Z. A spectral approach to analyze the nonlinear oscillatory fractional-order differential equations, Chaos Solitons Fractals, 146 (2021), 110921. M. Hamid, M. Usman, T. Zubair, R. U. Haq, A. Shafee, A. An efficient analysis for N-soliton, Lump and lump–kink solutions of time-fractional (2+ 1)-Kadomtsev–Petviashvili equation, Physica A: Stat. Mech. Appl., 528 (2019), 121320. Miller, K.S.; Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. A Wiley, New York (1993) Natiq, H.; Said, M.R.M.; Al-Saidi, N.M.G.; Kilicman, A.: Dynamics and complexity of a new 4D chaotic laser system. Entropy 21, 1–18 (2019). https://doi.org/10.3390/e21010034 Natiq, H.; Said, M.R.; Al-Saidi, N.M.G.; Kilicman, A.: Dynamics and complexity of a new 4D chaotic laser system. Entropy 21(1), 34 (2019) Owolabi, K.M.; Atangana, A.: Analysis and application of new fractional Adams-Bashforth scheme with Caputo-Fabrizio derivative. Chaos, Solitons Fractals 105, 111–119 (2017) Owolabi, K.M.; Atangana, A.: Chaotic behaviour in system of noninteger-order ordinary differential equations. Chaos Solitons Fractals 115, 362–370 (2018) P. Veeresha, H. M. Baskonus, W. Gao, Strong interacting internal waves in rotating ocean: Novel fractional approach, Axioms, 10 (2) (2021), 123 P. Veeresha, D. G. Prakasha, A.-H. Abdel-Aty, H. Singh, E. E. Mahmoud, S. Kumar, An efficient approach for fractional nonlinear chaotic model with Mittag-Leffler law, J. King Saud Univ. Sci., 33 (2) (2021), DOI: https://doi.org/10.1016/j.jksus.2021.101347. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999) Riemann, G.F.B.: Versuch einer allgemeinen Auffassung der Integration und Differentiation. Gesammelte Mathematische Werke, Leipzig (1896) S. Dadras and H. R. Momeni, A novel three-dimensional autonomous chaotic system generating two, three and four-scroll attractors, 373 (2009), 3637–3642. S. Kumar, R. Kumar, C. Cattani, B. Samet, Chaotic behaviour of fractional predator-prey dynamical system, Chaos Solitons Fractals, 135(109811), 2021. van Tartwijk, G.H.M.; Agrawal, G.P.: Nonlinear dynamics in the generalized Lorenz-Haken model. Optics Commun. 133(1–6), 565–577 (1997) Tavazoei, M.S.; Haeri, M.: Chaotic attractors in incommensurate fractional order systems 237(20), 2628–2637 (2008) Toker, D.; Sommer, F.T.; D’Esposito, M.: A simple method for detecting chaos in nature. Commun. Biol. 3(1), 1–13 (2020) Veeresha, P.: The efficient fractional order based approach to analyze chemical reaction associated with pattern formation. Chaos, Solitons Fractals 165, 112862 (2022) Veeresha, P.; Ilhan, E.; Baskonus, H.M.: Fractional approach for analysis of the model describing wind-influenced projectile motion. Phys. Scr. 96(7), 075209 (2021) Yang, X.J.; Baleanu, D.; Srivastava, H.M.: Local fractional similarity solution for the diffusion equation defined on cantor sets. Appl. Math. Lett. 47, 54–60 (2015)