Analysis and prediction on total fatigue life problems of fiber reinforced metal laminates under two-stage loading

Composite Structures - Tập 237 - Trang 111960 - 2020
Weiying Meng1, Yupeng Li2, Xiaochen Zhang1, Yu Zhang1, Yawen Wang3, Xiao Huang4
1School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China
2School of Information and Control Engineering, Shenyang Jianzhu University, Shenyang 110168, China
3Mechanical and Aerospace Engineering, University of Texas at Arlington, Arlington, TX 76019, USA
4Aero Engine Corporation of China, Beijing, 100097, China

Tài liệu tham khảo

Vlot, 2001 Homan, 2006, Fatigue initiation in fiber metal laminates, Int J Fatigue, 28, 366, 10.1016/j.ijfatigue.2005.07.030 Meng, 2016, Contrast study on fatigue life performance of glass fiber reinforced Al-Li alloy laminates under unimodal overload, Acta Aeronaut Astronaut Sin, 37, 1536 Huang, 2016, Fatigue crack growth and delamination behaviours of advanced Al-Li alloy laminate under single tensile overload, Fatigue Fract Eng Mater Struct, 39, 47, 10.1111/ffe.12319 Marissen, 1988 Sinke, 2006, Development of fiber metal laminates: Concurrent multi-scale modeling and testing, J Mater Sci, 41, 6777, 10.1007/s10853-006-0206-5 Hyoungseock, 2008 Yeh, 2011 Wu, 2005 Wu, 2002, Fatigue behaviour and life prediction of fibre reinforced metal laminates under constant and variable amplitude loading, Fatigue Fract Eng Mater Struct, 25, 417, 10.1046/j.1460-2695.2002.00517.x Guo, 1999, A phenomenological model for predicting crack growth in fiber-reinforced metal laminates under constant-amplitude loading, Compos Sci Technol, 59, 1825, 10.1016/S0266-3538(99)00042-1 Kieboom, 2000 Chang, 2008, Fatigue crack initiation in hybrid boron/ glass/ aluminum fiber metal laminates, Mater Sci Eng A, 496, 273, 10.1016/j.msea.2008.07.041 Vasek, 1997, Fatigue crack initiation in fiber-metal laminate GLARE, Mater Sci Eng A, s234– 236(97), 621, 10.1016/S0921-5093(97)00294-3 Alderliesten, 2007, On the available relevant approaches for fatigue crack propagation prediction in Glare, Int J Fatigue, 29, 289, 10.1016/j.ijfatigue.2006.03.003 Alderliesten, 2007, Analytical prediction model for fatigue crack propagation and delamination growth in Glare, Int J Fatigue, 29, 628, 10.1016/j.ijfatigue.2006.07.006 Alderliesten, 2009 Rans, 2011, Predicting the influence of temperature on fatigue crack propagation in Fiber Metal Laminates, Eng Fract Mech, 78, 2193, 10.1016/j.engfracmech.2011.04.005 Sen, 2015, Lay-up optimisation of fibre metal laminates based on fatigue crack propagation and residual strength, Compos Struct, 124, 77, 10.1016/j.compstruct.2014.12.060 Khan, 2009, Post-stretching induced stress redistribution in Fibre Metal Laminates for increased fatigue crack growth resistance, Compos Sci Technol, 69, 396, 10.1016/j.compscitech.2008.11.006 Khan, 2011, Delamination in Fiber Metal Laminates (GLARE) during fatigue crack growth under variable amplitude loading, Int J Fatigue, 33, 1292, 10.1016/j.ijfatigue.2011.04.002 Khan, 2009, Delamination growth in Fibre Metal Laminates under variable amplitude loading, Compos Sci Technol, 69, 2604, 10.1016/j.compscitech.2009.07.019 Khan, 2010, Application of a modified Wheeler model to predict fatigue crack growth in Fibre Metal Laminates under variable amplitude loading, Eng Fract Mech, 77, 1400, 10.1016/j.engfracmech.2010.03.041 Huang, 2015, Delamination and fatigue crack growth behavior in Fiber Metal Laminates (Glare) under single overloads, Int J Fatigue, 78, 53, 10.1016/j.ijfatigue.2015.04.002 Plokker, 2009, Fatigue crack growth in fibre metal laminates under selective variable-amplitude loading, Fatigue Fract Eng Mater Struct, 32, 233, 10.1111/j.1460-2695.2009.01333.x Spronk, 2015, Predicting fatigue crack initiation in fibre metal laminates based on metal fatigue test data, Int J Fatigue, 70, 428, 10.1016/j.ijfatigue.2014.07.004 Sen, 2015, Design optimisation procedure for fibre metal laminates based on fatigue crack initiation, Compos Struct, 120, 275, 10.1016/j.compstruct.2014.10.010 Chang, 2007, Off-axis fatigue cracking behaviour in notched fibre metal laminates, Fatigue Fract Eng Mater Struct, 30, 1158, 10.1111/j.1460-2695.2007.01185.x Antipov, 2012, Efficient aluminum-lithium alloys 1441 and layered hybrid composites based on it, Metall, 56, 342 Antipov, 2012, Investigation of a new fibre metal laminate (FML) family on the base of Al-Li-Alloy with lower density, Materialwiss Werkst, 43, 350, 10.1002/mawe.201200957 Aviation Industry Corporation of China. Process specification for phosphoric acid anodizing of structural bonding aluminum alloy. HB/Z 197-1991. China: The Standard; 1991. Aviation Industry Corporation of China. Test method for axial loading fatigue of metallic materials. HB5287-1996. China: The Standard; 1996. Dixon, 1951, Ratios involving extreme values, Ann. Math. Stat, 22, 68, 10.1214/aoms/1177729693 Post, 2008, Modeling the variable amplitude fatigue of composite materials: a review and evaluation of the state of the art for spectrum loading, Int J Fatigue, 30, 2064, 10.1016/j.ijfatigue.2008.07.002 Meng, 2018, Effect of mean stress on the fatigue life prediction of notched fiber-reinforced 2060 Al-Li Alloy laminates under spectrum loading, Adv Mater Sci Eng, 2018, 1 Xie, 2013, Principle of sample polymerization and method of P-S-N curve fitting, Chin J Mech Eng, 49, 96, 10.3901/JME.2013.15.096 Ruan, 1999, Effective elastic, piezoelectric and dielectric properties of braided fabric composites, Compos PartA: Appl Sci Manuf, 30, 1435, 10.1016/S1359-835X(99)00039-1 Chung, 2001, A symptotic expansion homogenization for heterogeneous media: computational issues and applications, Compos PartA: Appl Sci Manuf, 32, 1291, 10.1016/S1359-835X(01)00100-2 Feng, 2001, A study of three-dimensional four-step braided piezo-ceramic composites by the homogenization method, Compos Sci Technol, 61, 1889, 10.1016/S0266-3538(01)00090-2 Zhang, 2007, Topology optimal design of material microstructures using strain energy-based method, Acta Aeronaut Astronaut Sin, 20, 321