Analysis and prediction on total fatigue life problems of fiber reinforced metal laminates under two-stage loading
Tài liệu tham khảo
Vlot, 2001
Homan, 2006, Fatigue initiation in fiber metal laminates, Int J Fatigue, 28, 366, 10.1016/j.ijfatigue.2005.07.030
Meng, 2016, Contrast study on fatigue life performance of glass fiber reinforced Al-Li alloy laminates under unimodal overload, Acta Aeronaut Astronaut Sin, 37, 1536
Huang, 2016, Fatigue crack growth and delamination behaviours of advanced Al-Li alloy laminate under single tensile overload, Fatigue Fract Eng Mater Struct, 39, 47, 10.1111/ffe.12319
Marissen, 1988
Sinke, 2006, Development of fiber metal laminates: Concurrent multi-scale modeling and testing, J Mater Sci, 41, 6777, 10.1007/s10853-006-0206-5
Hyoungseock, 2008
Yeh, 2011
Wu, 2005
Wu, 2002, Fatigue behaviour and life prediction of fibre reinforced metal laminates under constant and variable amplitude loading, Fatigue Fract Eng Mater Struct, 25, 417, 10.1046/j.1460-2695.2002.00517.x
Guo, 1999, A phenomenological model for predicting crack growth in fiber-reinforced metal laminates under constant-amplitude loading, Compos Sci Technol, 59, 1825, 10.1016/S0266-3538(99)00042-1
Kieboom, 2000
Chang, 2008, Fatigue crack initiation in hybrid boron/ glass/ aluminum fiber metal laminates, Mater Sci Eng A, 496, 273, 10.1016/j.msea.2008.07.041
Vasek, 1997, Fatigue crack initiation in fiber-metal laminate GLARE, Mater Sci Eng A, s234– 236(97), 621, 10.1016/S0921-5093(97)00294-3
Alderliesten, 2007, On the available relevant approaches for fatigue crack propagation prediction in Glare, Int J Fatigue, 29, 289, 10.1016/j.ijfatigue.2006.03.003
Alderliesten, 2007, Analytical prediction model for fatigue crack propagation and delamination growth in Glare, Int J Fatigue, 29, 628, 10.1016/j.ijfatigue.2006.07.006
Alderliesten, 2009
Rans, 2011, Predicting the influence of temperature on fatigue crack propagation in Fiber Metal Laminates, Eng Fract Mech, 78, 2193, 10.1016/j.engfracmech.2011.04.005
Sen, 2015, Lay-up optimisation of fibre metal laminates based on fatigue crack propagation and residual strength, Compos Struct, 124, 77, 10.1016/j.compstruct.2014.12.060
Khan, 2009, Post-stretching induced stress redistribution in Fibre Metal Laminates for increased fatigue crack growth resistance, Compos Sci Technol, 69, 396, 10.1016/j.compscitech.2008.11.006
Khan, 2011, Delamination in Fiber Metal Laminates (GLARE) during fatigue crack growth under variable amplitude loading, Int J Fatigue, 33, 1292, 10.1016/j.ijfatigue.2011.04.002
Khan, 2009, Delamination growth in Fibre Metal Laminates under variable amplitude loading, Compos Sci Technol, 69, 2604, 10.1016/j.compscitech.2009.07.019
Khan, 2010, Application of a modified Wheeler model to predict fatigue crack growth in Fibre Metal Laminates under variable amplitude loading, Eng Fract Mech, 77, 1400, 10.1016/j.engfracmech.2010.03.041
Huang, 2015, Delamination and fatigue crack growth behavior in Fiber Metal Laminates (Glare) under single overloads, Int J Fatigue, 78, 53, 10.1016/j.ijfatigue.2015.04.002
Plokker, 2009, Fatigue crack growth in fibre metal laminates under selective variable-amplitude loading, Fatigue Fract Eng Mater Struct, 32, 233, 10.1111/j.1460-2695.2009.01333.x
Spronk, 2015, Predicting fatigue crack initiation in fibre metal laminates based on metal fatigue test data, Int J Fatigue, 70, 428, 10.1016/j.ijfatigue.2014.07.004
Sen, 2015, Design optimisation procedure for fibre metal laminates based on fatigue crack initiation, Compos Struct, 120, 275, 10.1016/j.compstruct.2014.10.010
Chang, 2007, Off-axis fatigue cracking behaviour in notched fibre metal laminates, Fatigue Fract Eng Mater Struct, 30, 1158, 10.1111/j.1460-2695.2007.01185.x
Antipov, 2012, Efficient aluminum-lithium alloys 1441 and layered hybrid composites based on it, Metall, 56, 342
Antipov, 2012, Investigation of a new fibre metal laminate (FML) family on the base of Al-Li-Alloy with lower density, Materialwiss Werkst, 43, 350, 10.1002/mawe.201200957
Aviation Industry Corporation of China. Process specification for phosphoric acid anodizing of structural bonding aluminum alloy. HB/Z 197-1991. China: The Standard; 1991.
Aviation Industry Corporation of China. Test method for axial loading fatigue of metallic materials. HB5287-1996. China: The Standard; 1996.
Dixon, 1951, Ratios involving extreme values, Ann. Math. Stat, 22, 68, 10.1214/aoms/1177729693
Post, 2008, Modeling the variable amplitude fatigue of composite materials: a review and evaluation of the state of the art for spectrum loading, Int J Fatigue, 30, 2064, 10.1016/j.ijfatigue.2008.07.002
Meng, 2018, Effect of mean stress on the fatigue life prediction of notched fiber-reinforced 2060 Al-Li Alloy laminates under spectrum loading, Adv Mater Sci Eng, 2018, 1
Xie, 2013, Principle of sample polymerization and method of P-S-N curve fitting, Chin J Mech Eng, 49, 96, 10.3901/JME.2013.15.096
Ruan, 1999, Effective elastic, piezoelectric and dielectric properties of braided fabric composites, Compos PartA: Appl Sci Manuf, 30, 1435, 10.1016/S1359-835X(99)00039-1
Chung, 2001, A symptotic expansion homogenization for heterogeneous media: computational issues and applications, Compos PartA: Appl Sci Manuf, 32, 1291, 10.1016/S1359-835X(01)00100-2
Feng, 2001, A study of three-dimensional four-step braided piezo-ceramic composites by the homogenization method, Compos Sci Technol, 61, 1889, 10.1016/S0266-3538(01)00090-2
Zhang, 2007, Topology optimal design of material microstructures using strain energy-based method, Acta Aeronaut Astronaut Sin, 20, 321